上午 11:40 GGA 年度论文奖获得者(2 人中的 2 人):Amarish K. Yadav,昆虫学和植物病理学系 Max Scott 博士实验室的博士后研究学者。论文标题:基于 CRISPR/Cas9 的分裂归巢基因驱动,针对双性,抑制全球水果害虫果蝇的种群
当我打电话给 VEC 时,我告诉他们如果我们能在第二天早上之前把鸟巢建好,那么鱼鹰父母就有机会继续照顾雏鸟。VEC 真的团结起来了。他们太棒了——搭起了一个新平台并重建了鸟巢,甚至在鸟巢外加了一根树枝作为栖木。如果(Jenn Fenn)没有足够敏锐地注意到鸟巢倒塌了,那些幼鸟就会死掉。当鸟巢倒塌时,鱼鹰父母会留在周围寻找它们的幼鸟。有时它们会在一两天内离开,但有时它们会坚持更长时间。令人担心的是父母可能会放弃。所以,你越快做越好。就在幼鸟被放回巢中,VEC 的摘鸟器放下几分钟后,妈妈就回到了巢里。从开始到结束,整个过程不到 18 小时!野生的父母确实爱他们的宝宝!第三只小鱼鹰现在过得很好,每天吃超过半磅的鱼、老鼠和肉!它受伤的眼睛好多了,断掉的脚也恢复得很好,每天需要护理四次。我们非常希望它能完全康复并被放生。
“我们很高兴与Haspeslagh家族和Ardo的整个团队合作,继续在可持续健康食品中建立领导者。巢的视野与Ardo的视野融为一体。我们拥有共同的信念,重点和专业知识,为长期合作提供了完美的基础。我们热爱公司对倡议的不懈努力和实施,这些计划推动了更多的人和行星友好的粮食生产。”
•山雀,麻雀或star的巢箱应在树上或墙壁上两到四米。•除非有白天的树木或建筑物在盒子上遮挡盒子,否则面对北部和东部之间的盒子,从而避免了强烈的阳光和最潮湿的风。•确保鸟类在没有任何直接入口的前面任何混乱的情况下通往巢穴的明显路径。稍微向前倾斜盒子,以便任何驱动雨都会撞到屋顶并弹跳。
我们的目标是解决Apis Labiosa和Apis Dorsata亚种之间的系统发育关系A. d。 Dorsata,A。D。 Binghami和A. d。 Breviligula,几位作者提出了最后两个物种。我们使用用最大似然方法分析的线粒体COX1和COX2基因序列对巨型蜜蜂进行了系统发育分析。在广义上,我们在多萨塔(A. dorsata)内获得了四个进化枝的支持:上面提到的三个亚种或物种,以及来自南部的第四个谱系。但是,我们的分析并未解决四个谱系之间的系统发育关系。在印度存在两个遗传区分开的“ A. dorsata”群体的存在与存在两个空腔巢蜜蜂的存在,即A. Cerana Cerana和A. c。印度(分别是黑山蜜蜂和黄色平原蜜蜂)。这表明过去的气候或地质事件可能暂时将印度人口与亚洲大陆的人群暂时隔离,从而导致分歧,并可能将印度巨人和空腔巢蜜蜂的物种形成,然后是东亚形式对印度的重新殖民化。对这些独特的谱系的认识对于保护计划很重要,因此可以考虑它们的各个分布,生态和迁移模式,因此可以维持它们所代表的遗传多样性。
上个世纪,蚊媒疾病传入、定植并扩展到各种新的地理范围。疟疾由雌性按蚊传播。尽管过去几十年在减轻疟疾负担方面取得了长足进步,但现在疟疾传播再次呈上升趋势,部分原因是蚊子对杀虫剂和抗疟药物产生了耐药性,最近又出现了 COVID-19 大流行的挑战,导致各种控制计划的实施效率降低。正在评估利用转基因基因驱动蚊子通过控制传播疾病的蚊子来减轻疟疾负担的效用。迄今为止,由于成功的原理验证和多代实验,在疟蚊中基于 CRISPR/Cas9 的归巢核酸内切酶设计的开发方面取得了显著进展。在本综述中,我们研究了当前基于 CRISPR/Cas9 的归巢内切酶基因驱动的开发经验,为开发用于有针对性控制野生疟疾传播蚊子种群的基因驱动系统提供了一个框架,该系统克服了诸如驱动抗性等挑战。我们还讨论了将基因驱动系统从科学发现推进到进一步研究和随后在地方性环境中的现场应用所需的其他实质性工作。
• 公元前 300 年,希腊人阿基塔斯 (Archytas) 用水蒸气推动的模型鸽飞行 • 公元 100 年,中国人在空心竹子中装满火药 • 1232 年,中国人使用火箭作为武器 • 1898 年,康斯坦丁·齐奥尔科夫斯基 (Konstantin Tsiolkovsky) 提出使用火箭探索太空的想法 • 1903 年,齐奥尔科夫斯基出版了《用火箭推进的飞行器探索宇宙》;沃纳·冯·布劳恩 (Wernher von Braun) 阅读了齐奥尔科夫斯基的著作 • 1926 年,罗伯特·戈达德 (Robert Goddard) 成功发射了一枚液体燃料火箭 • 20 世纪 40 年代,沃纳·冯·布劳恩 (Wernher von Braun) 在与英国的战争中使用 V-2 火箭
•用于山雀,麻雀或star的巢箱应固定在一棵树或墙壁上两到四米。•除非有白天的树木或建筑物在盒子上遮挡盒子,否则面对北部和东部之间的盒子,从而避免了强烈的阳光和最潮湿的风。•确保鸟类在没有任何直接入口的杂物的情况下通往巢穴的清晰路径。稍微向前倾斜盒子,以便任何驱动雨都会撞到屋顶并弹跳。
锂硼氢化物储氢材料的最新进展 张文宣, 张欣, 黄振国, 李海文, 高明霞, 潘红鸽, 刘永锋* 张文轩, 张晓燕, 张晓燕博士, 高明贤教授, 潘华光教授, 刘永锋教授 浙江大学硅材料国家重点实验室和材料科学与工程学院,杭州 310027,中国 电子邮件: mselyf@zju.edu.cn 潘华光教授, 刘永锋教授 西安工业大学新能源科技研究院,西安 710021,中国 黄志刚教授 悉尼科技大学土木与环境工程学院,81 Broadway, Ultimo, NSW, 2007,澳大利亚 李华伟教授 合肥通用机械研究院,合肥 230031,中国 关键词: 氢, 储氢, 硼氢化物, LiBH 4 , 热力学, 动力学 摘要 :
摘要 胰腺导管腺癌 (PDAC) 是最难治愈的恶性肿瘤之一,5 年相对生存率仅为 6%。其治疗效果不佳是由于化疗耐药和独特的病理生理,即丰富的炎性细胞因子和细胞外基质 (ECM) 异常增生。基于骨髓间充质干细胞 (BM-MSCs) 能够影响 PDAC 的肿瘤微环境和恶性生长的理论,我们利用来自 BM-MSCs 的外泌体 (Exos) 作为 PDAC 归巢载体,以超越病理 ECM 的限制并增加治疗药物在肿瘤部位的积累。为了克服 PDAC 的化疗耐药性,在纯化的 Exos 上负载紫杉醇 (PTX) 和吉西他滨代谢的中间产物吉西他滨单磷酸盐 (GEMP)。本研究在肿瘤球体和PDAC原位模型上,Exo 递送平台表现出了归巢和穿透能力的优势。同时,还发现其在体内和体外均具有良好的抗肿瘤效果,且全身毒性相对较小。我们构建的 Exo 平台加载了 GEMP 和 PTX,得益于天然的 PDAC 选择性,具有出色的穿透性、抗基质性和克服化学耐药性的综合功能(图 1)。值得期待的是,Exo 平台可能为 PDAC 的靶向治疗提供一种有前途的方法。