摘要背景:糖尿病(DM)是一种复杂的慢性疾病,高血糖症,葡萄糖水平高于正常患者的葡萄糖水平,其患者人数正在增加。通过抑制淀粉消化途径中的人类麦芽糖酶 - 葡萄糖酶酶,用于延迟葡萄糖的产生,从而有助于治疗II型糖尿病。的目的和方法:将mangostin衍生物(Alpha-Mangostin,beta-Mangostin,Gamma-Mangostin)和Sinensetin的潜力分析为抗糖尿病的潜在预测,并在对人麦芽糖 - 葡萄糖酶靶标中使用型号的型号预测,并使用与托架的型号进行了对型号的对照。结果:配体,β,γ-蒙植物素和辛列蛋白与大分子有良好的相互作用,并在人麦克罗糖酶 - 葡萄糖酶的大分子上也形成氢键,也形成氢键。结论:Mangostin衍生物(,β和γ)和sinensetin的平均含量可以通过PKCSM在线工具预测,并且与Miglitol(如Miglitol)相比,它们对麦芽酶 - 葡萄糖酶靶靶标有良好的亲和力。关键词:mangostin衍生物,辛辛素,分子对接,麦芽糖酶 - 葡萄糖酰基酶,抗糖尿料。
摘要基于凝胶剂的药物已被重新定义为抗菌治疗候选物,并显示出对抗药性病原体的替代治疗选择的巨大潜力。凝固膜的活性(Ga 3+)是其与铁铁(Fe 3+)的化学相似性,并取代了铁依赖性途径。ga 3+在典型的生理环境中是氧化还原性的,因此使铁代谢对细菌生长至关重要。麦芽盐(GAM)是一种众所周知的凝胶水溶性配方,由中央凝胶阳离子组成,该中央凝胶配位与三个麦芽糖配体配位,[GA(Maltol -1H)3]。这项研究实施了一种无标记的定量蛋白质组学方法,以观察GAM对细菌病原体Pseudomonas铜绿菌的影响。将铁替换为镀具有模拟铁限值的反应,如与铁采集和储存相关的蛋白质的增加所示。还发现了与法定感应和蜂群运动相关的蛋白质的丰度。这些过程是细菌毒力和传播的基本组成部分,因此暗示了GAM在治疗铜绿假单胞菌感染中的潜在作用。
摘要 本文介绍了一种比色检测唾液 α-淀粉酶的方法,该酶是自主神经系统 (ANS) 活动的潜在生物标志物之一,可用于评估疲劳。利用 α-淀粉酶裂解多糖 α 键的能力来开发比色测定法。在所提出的方法中,2-氯-4-硝基苯基-α-D-麦芽三糖苷作为底物,在被唾液 α-淀粉酶裂解后释放出有色副产物。引入麦芽糖作为非竞争性抑制剂可在生理相关浓度范围 (20-500 μ g/mL) 内产生理想的线性响应,检测限 (LOD) 为 8 μ g/mL(在水溶液中)。随后优化底物和非竞争性抑制剂的浓度,以进行唾液 α-淀粉酶的比色检测。提出了一种简便的纸基“试纸”检测方法,用于分析人类唾液样本,唾液成分的干扰很小。所提出的检测方法快速、特异性强且易于实施,可用于比色检测唾液 α-淀粉酶 20-500 μ g/mL 之间。互补的 RGB(红、绿、蓝成分)分析 17 提供定量检测,LOD 为 11 μ g/mL。这两种检测格式以 Phadebas 18 测试为基准,Phadebas 18 测试是一种最先进的 α-淀粉酶分光光度检测方法。所报告的纸基方法 19 具有很高的潜力,可用于评估 ANS 对应激源的反应改变,可能在疲劳评估和监测疲劳发作方面有应用。21
罗恩(Ron)工作的许多MGH工作人员对他产生了深远而持久的影响。最重要的可能是爱德华·D·丘吉尔(Edward D. Churchill),他是大学外科医生 - 一名外科科学家的体现,他优雅地为不断发展的胸腔手术领域的问题带来了应用研究。反映了他的导师,罗恩(Ron)在临床手术方面发展了出色的专业知识,同时在他的大部分职业生涯中追求生产实验室的基础科学兴趣。这个实验室培养了许多年轻研究人员的职业。他的作品使他成为国际知名和朋友。Ron的职业生涯肯定是对本世纪最伟大的外科教育者之一丘吉尔博士感到自豪和满意的根源。Richard H. Sweet也对Ron产生了深远的影响。 Sweet在手术室中具有无与伦比的技术设施,即使是解剖学的最细微细节,也有完整的了解。 他将每个操作分为一系列步骤,并具有正确的Richard H. Sweet也对Ron产生了深远的影响。Sweet在手术室中具有无与伦比的技术设施,即使是解剖学的最细微细节,也有完整的了解。他将每个操作分为一系列步骤,并具有正确的
1. Wickerham, J. Tropical Med. Hyg., 42, 176 (1939) 2. Williams, (Ed.),2005,《官方分析化学家协会官方分析方法》,第 19 版,AOAC,华盛顿特区 3. 微生物类型培养物保藏中心和基因库 (MTCC) 微生物技术研究所,昌迪加尔。 4. Isenberg, HD 《临床微生物学程序手册》第 2 版。 5. Jorgensen, JH、Pfaller, MA、Carroll, KC、Funke, G.、Landry, ML、Richter, SS 和 Warnock., DW (2015) 《临床微生物学手册》,第 11 版。 1. 6. 美国公共卫生协会,《乳制品检验标准方法》,1978 年,第 14 版,华盛顿特区 7. Salfinger Y. 和 Tortorello ML,第五版(编辑),2015 年,《食品微生物检验方法概要》,美国公共卫生协会,华盛顿特区 8. Wehr HM 和 Frank JH,2004 年,《乳制品微生物检验标准方法》,第 17 版,APHA Inc.,华盛顿特区
粉末外观 浅黄色,可能略带绿色,均匀,自由流动的粉末。 凝胶 坚固,与 MV424 的 2.0% 琼脂凝胶相当。 颜色和透明度 浅琥珀色,在培养皿中形成非常微乳白色的凝胶,在试管中形成非常微乳白色的溶液。 反应 4.1% w/v 的 MV424 或 2.1% w/v 的 MV425 水溶液在 25°C 下的反应为 pH 6.2 ± 0.2。 培养反应 在 25-30°C 下孵育 40 -72 小时后观察到的培养特征。生物体 (ATCC) 生长 pH 3.4 时生长 pH 6.2 时黑曲霉 (16404) 良好-茂盛 良好-茂盛 白色念珠菌 (10231) 良好-茂盛 良好-茂盛 酿酒酵母 (9763) 良好-茂盛 良好-茂盛 莱希曼乳杆菌 (4797) 较差 良好-茂盛 大肠杆菌 (25922) 受抑制 良好-茂盛
原理和解释渗透性酵母通常是造成高糖食品变质的原因,包括果酱,蜂蜜,浓缩果汁,带有软中心的巧克力糖果等。(4,6)。可以在高浓度的有机溶质(尤其是糖)中生长的生物称为渗透液。酵母是在高渗透压的非离子环境中遇到的最常见的渗透性微生物,例如含有高浓度糖的食物。渗透性葡萄糖琼脂,用于检测和分离酵母(如酵母菌),这些微生物(如酵母菌)在食品工业中最常见。我在My-40g琼脂中代表麦芽提取物和酵母提取物,在培养基中40%的葡萄糖代表40%,满足上述要求。该培养基含有麦芽提取物和酵母提取物,可提供氮营养素,氨基酸,维生素,跟踪成分的渗透成分。培养基中的40%葡萄糖满足这些酵母的营养需求。