摘要:高尿酸血症已成为全球负担,随着相关代谢性疾病和心血管疾病的越来越多的患病率和风险。尿液疗法通过通过肾脏促进尿酸排泄,作为降低尿酸盐的重要疗法。但是,有效且安全的尿液疗法仍在迫切需要在诊所使用。在这项研究中,我们旨在建立体外和体内模型,以帮助发现新型的尿液治疗,并寻找有效的活性化合物,尤其是针对尿酸盐转运蛋白1(URAT1),这是肾脏处理尿酸稳态的主要尿酸盐转运蛋白。结果,对于初步筛选,使用非同位素尿酸摄取测定法在Hurat1稳固表达的HEK293细胞中评估了体外URAT1转运活性。在亚急性高尿症小鼠模型(亚hua)中评估了体内治疗效果,并在慢性高尿症小鼠模型(CH-HUA)中进一步确认。通过利用这些模型,获得化合物CC18002作为有效的URAT1抑制剂,IC 50值为1.69 µm,在亚hua和Ch-Hua小鼠中且降低的尿酸降低效应,与同一剂量的本茨溴酮相当。此外,CC18002处理不会改变黄嘌呤氧化还原酶(关键酶催化尿酸合成)的活性。综上所述,我们开发了一种新颖的筛选系统,包括针对URAT1的细胞模型和两种小鼠模型,以发现新型的尿液治疗。利用该系统,研究了化合物CC18002作为候选URAT1抑制剂治疗高尿酸血症。
摘要:由于活性氧(ROS)的过量产生,血管内皮内的氧化应激被认为是2型糖尿病的心脏血管并发症的起始和进展至关重要的。ROS一词包括多种化学物种,包括超氧化阴离子(O 2• - ),羟基自由基(OH - )和过氧化氢(H 2 O 2)。虽然低浓度ROS的本构生成对于正常的细胞功能是必不可少的,但过量的O 2• - 可能导致不可逆的组织损伤。过量的ROS产生由黄嘌呤氧化酶,未偶联的一氧化氮合酶,线粒体电子传输链和烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶催化。在O 2• - - NADPH氧化酶的NOX2同工型中被认为对2型糖尿病中发现的氧化应激至关重要。 相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。 本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。被认为对2型糖尿病中发现的氧化应激至关重要。相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。
分子 nROH TPSA(Tot) ALOGPS_logP 1,1,1-三氯乙烷 0 0 2.45 1,2-二甲基苯 0 0 3.16 1,4-二甲基苯 0 0 3.15 1,7-二甲基黄嘌呤 0 72.68 -0.63 1-氯-2,2,2-三氟乙烷 0 0 1.82 1-羟基咪达唑仑 1 50.41 3.09 2,2-二甲基丁烷 0 0 3.74 2-甲基戊烷 0 0 3.6 3-甲基己烷 0 0 4.18 3-甲基戊烷 0 0 3.98 4-羟基咪达唑仑 1 50.41 3.05 对乙酰氨基酚 0 49.33 0.51 丙酮0 17.07 -0.29 氨基比林 0 30.17 0.94 异戊巴比妥 0 75.27 1.87 安替比林 0 26.93 1.18 布他西尼 0 64.43 3.05 环己烷 0 0 3.46 环丙烷 0 0 1.56 去甲丙嗪 0 45.2 4.28 去羟肌苷 1 93.03 -1.26 二乙二醇二乙烯基醚 0 27.69 1.26 恩氟醚 0 9.23 2.24 乙醇 1 20.23 -0.4 乙醚 0 9.23 1.12 乙苯 0 0 3.27 氟硝西泮 0 78.49 2.2 氟氧苯 0 9.23 1.7 氟烷 0 0 2.5 茚地那韦 2 118.03 3.26 异丁醇 1 20.23 0.6 异氟烷 0 9.23 2.3 异丙醇 1 20.23 0.04 甲索达嗪 0 72.69 3.83 甲氧氟烷 0 9.23 2.01 甲基环戊烷 0 0 3.15 甲基乙基酮 0 17.07 0.41 米氮平 0 19.37 2.9 间二甲苯 0 0 3.15 奈韦拉平 0 63.57 1.75 N-庚烷 0 0 4.33 N-己烷 0 0 4.02 去甲西泮 0 41.46 2.79
摘要:咖啡因被描述为可以被细菌降解的必不可少的天然,可行和可销售的嘌呤生物碱。细菌使用咖啡因作为其唯一的碳和氮的能力已在四十多年前阐明。本文使用标准收集的标准技术对微生物脱染过程的潜力进行了回顾,这些技术的最新信息和适当的信息以及来自在线和图书馆来源的数据侧重于细菌咖啡因降解过程:N-脱甲基化和C -8氧化。观察到这两个过程对咖啡因降解更有效,安全,具体,并且在经济上至关重要。各种生物已经在全球范围内分离出来,能够降解咖啡因,例如克雷伯氏菌,犀牛,阿尔卡吉烯,serratia,phanerochaete和bacillus sp。此外,已经确定了细菌咖啡因降解的无数生物技术应用,例如咖啡因粉化环境的生物修复,生物脱落,化学生产和诊断工具。doi:https://dx.doi.org/10.4314/jasem.v27i9.4 Open Access政策:Jasem发表的所有文章都是由AJOL提供支持的PKP的Open-Access文章。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。版权策略:©2023作者。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。J. Appl。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Lukman,K;穆罕默德,a; Shehu,D; Babandi,一个; Yakasai,H。M;易卜拉欣,S。(2023)。微生物签发过程的潜力:审查。SCI。 环境。 管理。 27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。 它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。 该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。 咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。 咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质SCI。环境。管理。27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质
res。见。sevilayerdoğankablan个人信息电子邮件:sevilay.erdogan@hacettepe.edu.tr Web:https://avesis.hacettepe.edu.tr/sevilay.tr/sevilay.erdogan.erdogan orcids orcid:0000-000-0002-6503-0142 Institute, Analytical Chemistry A.B.D., Turkey 2015 - 2022 Master, Hacettepe University, Institute of Health Sciences, Analytical Chemistry, Turkey 2013 - 2015 Bachelor, Bülent Ecevit University, Science Literature, Chemistry, Turkey 2006 - 2011 Ph.D. Electroanalytic Studies, Hacettepe University, Institute of Health Sciences, Analytical Chemistry, 2022 Master's Degree, Sefuroxim Axhethle's Voltametric Behaviors and Analysis from Pharmaceutical Preparates by Electroanalytic methods, Hacettepe University, Institute of Health Sciences, Analytical Chemistry (YL) (YL) (YL) (YL), 2015 Research Fields, 2015 Research Areas, Temel Eczacty Sciences.药房,分析化学,化学,分析化学,电分析方法,健康科学,基础科学学术头衔 /职责研究助理博士热闪光治疗策略和罗非尼组合在乳腺癌治疗中通过共毒物纳米颗粒Esim O.,Adatepe S.,Sarper M.,Bakirhan N.K.,ErdoğanKablan S.,Kocak E.,Kocak E.,Kocak E. Nemutlu E.,Savaser A.,Ozkan S. A.等。药物传递科学技术杂志,CILT.98,2024(SCI-EXPEND)II。代谢组学分析,用于诊断心肺旁路后急性肾衰竭,ErdoğanKablanS.,YılmazA。,Syed H.,KocabeyoğluS。S.,Kervanü。,ÖzaltinN。N.,Nemutlu E.基于电化学的靶向代谢组学用于血浆中的尿酸,黄嘌呤和假明
糖尿病在全球影响5.37亿成年人,印度尼西亚有1,947万例病例。它是由胰岛素产生不足或无效的产生,导致肾病等并发症。由于常规药物的不利影响,对更安全的替代品的需求日益增加。功能性食品和生物活性化合物在管理糖尿病方面表现出希望。这样的选择是大米。印度尼西亚拥有一种独特的大米品种,称为普鲁·曼多(Pulu Mandoti),专门在印度尼西亚玛卡萨尔(Makassar)的恩雷卡(Enrekang)区种植。这种令人愉悦的红色大米变体提供了许多营养益处。与白米不同,红米在钙,锌,镁,蛋白质和纤维等必需营养素中含量丰富。这项研究的重点是Pulu Mandoti,使用LC-MS分析探索了其抗糖尿病和抗氧化活性的潜力。十二(12)种化合物,其中11种(2,2'-甲基苯甲比(二甲基苯甲比[B,d]噻吩))表现出最强的抗氧化剂。与Molecular Docking相比,与分子粘结相比,具有最强的抗氧化剂。 α-葡萄糖苷酶(分别为–10.5和–8.7 kcal/mol),而Acarbose的结合亲和力最高。用于抗氧化剂分析,化合物11和5分别证明了NADPH氧化酶和黄嘌呤氧化还原酶的结合亲和力最低,而维生素C的结合亲和力分别显示出最高的结合亲和力。抗糖尿病药物的药物性能相似性的系数相似性的系数相似性范围为0.40-0.76,抗氧化剂的化合物5显示最高系数值(0.76),抗氧化剂的系数最高(0.76),抗氧化剂的抗氧化剂值最高,抗氧化剂A乙酸抗氧化剂A乙酸抗氧化剂A乙酸抗氧化剂。
痛风是一种常见的炎性关节炎,其病因是血清尿酸水平长期升高。高尿酸血症除了导致痛风发作外,还会导致结石状的尿酸钠晶体(痛风石)沉积在关节和软组织中,引起剧烈疼痛和损伤。尽管痛风是一种古老的疾病,病因已十分明确,但其治疗前景却落后于其他风湿病。治疗的重点是降低血清尿酸浓度,降尿酸药物分为三类:黄嘌呤氧化酶抑制剂(如别嘌呤醇、非布索坦),通过阻断次黄嘌呤转化为尿酸来减少尿酸的产生;促尿酸排泄剂[主要是尿酸转运蛋白 1 (URAT1) 抑制剂,包括丙磺舒、来西那拉],促进肾脏排泄尿酸;以及将尿酸转化为尿囊素(一种更容易排泄的水溶性化合物)的重组尿酸酶(例如,聚乙二醇化尿酸酶)。一些治疗方法已经存在了几十年,但往往受到毒性的限制,主要与肝脏和肾脏有关。最近的研究集中于开发更有效和更具体的 URAT1 抑制剂,希望能够克服这些安全问题,并提供耐受性更好、更有效的治疗方法。较新的尿酸排泄剂具有与其前身不同的化学结构,从而具有更高的 URAT1 选择性,以减少脱靶效应。其中一些在临床试验中显示出有希望的结果,并可能被证明是现有不理想疗法的可行替代方案。事实上,新一代尿酸排泄剂可能有可能成为痛风以外适应症的可行疗法,例如某些代谢疾病。在这篇叙述性综述中,我们讨论了尿酸排泄剂(主要是 URAT1 抑制剂)在过去、现在和未来慢性痛风治疗领域中的地位。
肠道菌群与认知发展有因果关系。我们旨在确定介导其对认知发展的影响以及与最有前途的代谢产物有关的食物或营养的代谢产物。粪便(多利安 - 皮萨克队列,包括90个有婴儿的一般人群,42/48女性/男性,2011年至2014年出生)(FMT)中的C57BL/6无菌小鼠。儿童和受体小鼠通过认知表型或基于保护性代谢物进行分层。在儿童中获得了食物频率问卷。小鼠的认知测量值包括五次Y迷宫测试,直到FMT后23周,以及(23周)PET-CT用于脑代谢和放射性,以及基于超声的颈动脉血管指数。儿童(粪便,尿液)和小鼠(粪便,血浆)代谢组通过1H NMR光谱法测量,并通过16S rRNA扩增子测序在小鼠中分析粪便菌群。儿童和受体小鼠的认知评分相关。fmt依赖性的脑代谢修饰。从高认知或保护性代谢物富集的儿童中接受FMT的小鼠发展出了卓越的认知行为表现。一组代谢产物,即黄嘌呤,甲明甲明,甲酸盐,甘露糖,酪氨酸,苯丙氨酸,谷氨酰胺,可介导供体儿童和受体小鼠的肠道认知轴。血管指标部分解释了代谢物与表型关系。儿童消费豆类,全乳酸奶和鸡蛋以及铁,锌和维生素D的摄入似乎支持保护性肠道代谢物。总体而言,参与炎症,嘌呤代谢和神经递质合成的代谢产物介导了肠道认知轴,并具有筛查的希望。相关的饮食和营养发现提供了针对认知保护的微生物群的干预措施,并具有持久的影响。
前糖尿病是一种与肠道mi-Crobiome组成相关的代谢疾病,尽管机制仍然存在。我们搜索了142名IFG和1,105名来自英国成人双胞胎登记室(Twinsuk)的1,105名健康的知识分(Twinsuk)中的142名IFG和1,105名健康的Indi-Viduals(Twinsuk)中的142名IFG和1,105名健康的知识分,搜索了肠道微生物组功能的读数,与肠道微生物组功能的读数(IFG)有关。,我们使用了奥格斯堡(KORA)队列(318个IFG个人,689个健康个体)的合作健康研究来复制我们的发现。我们将八个IFG-正相关的代谢产物(1-甲基氧烷,烟酸,葡萄糖醛酸,尿苷,胆固醇,胆固醇,丝氨酸,咖啡因和原生化IX)组合为IFG-亚代谢特评分,与较高的赔率(或3. ORS)相关的IFG(ORS)(IFG)(IFG)(IFG)(IFG)(IFG)(IFG)(IFG(IFG))(ifg(OR)(IFG))(ifg(OR))(ifg(OR)) 3.02 - 5.02],p <0.0001,kora:OR 1.3 [95%CI 1.16 - 1.52],p <0.0001)和入射2型糖尿病(T2D; Twinsuk:危险比4 [95%CI 1.97 - 8],p = 0.0002)。尽管这些是宿主产生的含有的tabolites,但我们发现肠道微生物组与它们的粪便水平有很强的相关性(曲线下的面积> 70%)。大量的粪便脂核酸,dorea fomicigenerans,ruminococcus torques和dorea sp。af24-7lb与IFG呈正相关,这种关联是由1-甲基黄嘌呤和烟酸酯部分介导的(方差为平均14.4%[SD 5.1],p <0.05)。我们的结果表明,肠道微生物组不仅通过产生微生物代谢物,而且还通过影响肠道吸收/排泄宿主产生的代谢物和
酶联交联是一种聚合途径,依赖于酶作为裂解或形成共价键的试剂。酶是高度底物特异性的,具有短反应时间,用于催化交联的同时抑制潜在的毒性侧反应,这使得这些交联方法比其化学对应物更有效(Bae等,2015; Hu等,2019b)。这些反应也具有细胞相容,无创,并通过控制酶浓度来良好地控制水凝胶形成(Sperinde&Griffith,1997)。酶联交联是一种在组织工程和再生医学中使用的水凝胶的有趣方法,因为它可以在温和的生理条件下提供快速的凝胶化(通常不到10分钟),使其适合于体内形成水凝胶在内的生物学应用(Hu等,2019b; Mohammed&Murphy; Mohammed&Murphy,2009; Moreira; Moreira teixeira exeira and exeira。此外,通常可以通过修改温度,pH或离子强度等外部因素来控制酶活性(Claaßen等,2019; Heijnis等,2010)。酶已用于催化反应。使用黄嘌呤氧化酶将黄牛蛋白氧化为白细胞蛋白酶(Kalckar等,1950)。最早描述的酶用于水凝胶交联应用的一种历史可以追溯到1990年代后期,当时Sperinde和Griffith使用经凝集丁胺酶通过交联功能化的多型(乙烯甘氨酸)(PEG)(PEG)(PEG)(PEG)和裂解的polypeptepepte&Grifififififififf和1997的盐酸和盐酸盐(Sperififififififf)来形成水凝胶网络。从那时起,转透明酶一直是组织工程中最广泛使用的酶,以及辣根过氧化物酶(HRP)。以后的酶通过将过氧化氢(H 2 O 2)作为氧化剂催化苯酚或苯胺衍生物的偶联(Ren等,2017)。这种反应可以轻松调整胶凝时间,机械强度,降解动力学和随后水凝胶的多孔结构,通过控制成分的浓度(Bae等,2015; Cheng等,2018)。酶线交联的水凝胶的多功能性和可调性转化为使用