摘要 - 在本文中,我们表明虚拟现实(VR)疾病与注意力的降低有关,这是通过在双任务范式中收集的脑电图(EEG)测量的P3B事件相关电位(EEG)的测量结果检测到的。我们假设疾病症状(例如恶心,眼睛疲劳和疲劳)将降低用户注意在虚拟环境中完成的任务的能力,并且在经历了P3B份量的降低中,在体验VR疾病的同时,将动态地反映出注意力的降低。在用户研究中,参与者沿着VR的博物馆进行了游览,沿着VR的一条旋转数量不同,以前证明会导致不同水平的VR病。在关注虚拟博物馆(主要任务)时,要求参与者默默地计算不同频率的音调(次要任务)。在用户没有戴头部安装显示器(HMD)时,进行了与VR病疾病情况进行比较的控制测量值,而当他们沉浸在VR中,但没有在环境中移动。这项探索性研究表明,在多次分析中,在任务过程中收集的P3B的效果平均幅度与任务后用问卷(SSQ)测得的疾病严重程度以及次级任务的计数错误数量有关。因此,VR病可能会损害注意力和任务表现,并且可以通过ERP措施进行这些注意力的变化,而无需要求参与者评估他们的疾病症状。
简介:GREP是一种命令行工具,用于搜索特定的字符字符串。它为您提供包含您要寻找的字符串的文件中的行。它可以将结果打印到屏幕上或将其保存在新文件中。- 查看底漆序列并将其保存到新文件中:grep -s'taaacttcagggtgaccaaaaaaaaatca'query_file.file.fasta> output1.fasta此命令在文件query_file.fasta中查找所涉及的序列,并将其保存到uptum1.fasta中。GREP中的-s选项用于抑制有关不存在或不可读取文件的错误消息。当您将-s与GREP一起使用时,它会默默地忽略这些错误,而不是显示它们。- 将先前的线与查询行伸入一个新文件中:添加“ -b 1”使您可以将上一行带有包含所讨论的字符串的行。这对于获取FASTA文件的DNA序列和标题线很有用。grep -b 1 -s'taaacttcaggggggggggtgaccaaaaaaatca'query_file.fasta> output1.fasta -fasta -fasta -cousting with Grep:GREP也可以用于计数。例如:grep -c'taaacttcaggggggtgaccaaaaaaaatca'infile.fasta计数其中有多少个这些序列字符串出现在infile.fasta中。- 搜索多种模式:您还可以使用GREP在同一命令中找到作为一组模式。GREP将打印包含您指定的任何模式中的任何一种的行。为此,将其运行如下:三个(OR)的任何一个:GREP'tatter1 | pattern2 | pattern3'fileName所有三个模式(和)grep'tatter 1'fileName | GREP'pattern2'| grep'pattern3' - 在或示例中| |它代表或示例中或示例中,它将输出从一个命令传输到另一个命令。
美国海军天文台为 GPS 先驱举办名人堂仪式 作者:Jonathan B. Holloway,美国海军气象学和海洋学司令部公共事务部 华盛顿特区 — 美国海军天文台 (USNO) 于 2023 年 4 月 6 日举办了海军海洋学名人堂 (HOF) 仪式,以引入 USNO 自己的 Dennis McCarthy 博士。“McCarthy 博士被授予第一位入选海军海洋学名人堂的 USNO 员工的荣誉并不令人意外,”USNO 主管 H. F. “Rip” Coke 上尉说。“在过去的半个世纪里,丹尼斯一直默默地担任国际公认的精确时间和地球定位主题专家 (SME),确保全球使用的导航产品的准确性。” 除了作为国际地球自转和参考系统服务 (IERS) 的创始成员之外,麦卡锡在美国海军司令部的职业生涯中取得了里程碑式的成就,塑造了全球社会并改变了世界。“基本上,任何曾经使用 GPS 准确到达目的地的人都应该感谢他,”科克说。20 世纪 80 年代初,当美国国防部和海军的科学家和工程师表示担心需要地球定位预测来改善全球商业和海军舰艇的海上导航时,麦卡锡就是被要求满足这一需求的 SME。麦卡锡在那段时间的工作促成了美国海军司令部地球定位部门的成立,此前他确定了提供时间和地球定位参数 (EOP) 的方法。麦卡锡获得的著名专业奖项包括:美国海军司令部西蒙·纽科姆奖(1993 年)、司令奖(2006 年)、海军优秀文职服务奖(2006 年)和总统级功勋服务高级专业人员奖(2006 年)。美国海军司令部最初成立于 193 年前,当时是美国海军海图和仪器仓库,现在继续为美国、海军和国防部发挥着重要的作战作用
Dawn-Bio是一家生物技术公司,致力于为成千上万的人默默地挣扎而努力挣扎。凭借其开创性的平台技术 - 一种人类干细胞的胚胎和植入模型 - Dawn-Bio具有独特的能力,可以发现和开发分子,从而增强IVF中健康的活产。今天,IVF诊所选择最佳胚胎。 使用Dawn-Bio,他们将能够更好地改变自己的轨迹。 Virotrust诊断专门用于开发定制测定,以检测致病靶标。 Viverita发现:癌症仍然是一种致命的疾病,具有巨大的未满足医疗需求,而有效的治疗靶标的短缺仍然是发展挽救生命的癌症治疗的关键局限性。 Viverita Discovery Flexco与母公司Viverita Therapeutics Inc.(总部位于美国波士顿)致力于识别和降低风险的新型药物靶标,并通过拥抱癌症的复杂性和异质性,发现新的精确癌症治疗浪潮。 这些公司由两个VBC校友Daniel Schramek和Ulrich Elling以及经验丰富的生物技术企业家Xuewen Pan共同创立。 他们认为,最好在体内揭露和验证新颖的目标(即 体内Veritas)。今天,IVF诊所选择最佳胚胎。使用Dawn-Bio,他们将能够更好地改变自己的轨迹。Virotrust诊断专门用于开发定制测定,以检测致病靶标。Viverita发现:癌症仍然是一种致命的疾病,具有巨大的未满足医疗需求,而有效的治疗靶标的短缺仍然是发展挽救生命的癌症治疗的关键局限性。Viverita Discovery Flexco与母公司Viverita Therapeutics Inc.(总部位于美国波士顿)致力于识别和降低风险的新型药物靶标,并通过拥抱癌症的复杂性和异质性,发现新的精确癌症治疗浪潮。这些公司由两个VBC校友Daniel Schramek和Ulrich Elling以及经验丰富的生物技术企业家Xuewen Pan共同创立。他们认为,最好在体内揭露和验证新颖的目标(即体内Veritas)。viverita的专有体内发现平台,内部开发的以及从OEAW和MSH多伦多获得许可,包括变革性的遗传筛查技术和忠实的疾病模型,以独特地定位我们,以使我们展现出大量的生理相关的小说和生物标志物,以促进新颖的精确癌症的发展。
首先,我必须感谢我的导师卡洛·卡索纳托 (Carlo Casonato) 和保罗·特拉弗索 (Paolo Traverso),感谢他们相信我,并勇敢地为我提供了在不同学科之间工作的机会。我特别感谢前者在写作过程中给予我的宝贵建议和持续支持,也感谢后者给予我机会经常接触布鲁诺凯斯勒基金会并结识在其中工作的优秀专业人士。我还要非常感谢整个 BioDiritto 研究小组 (Carla、Cinzia、Elisabetta、Giulia、Lucia、Marta I、Marta II、Sergio 和 Simone),他们让我从第一天起就感到宾至如归,不断给予鼓励,并提供许多团队合作的机会,让我始终面带微笑。尤其是玛尔塔,她是我的宝贵向导和忠实盟友,在困难时期我可以向她寻求建议和安慰。我还要感谢安德里亚 (Andrea)、洛伦佐 (Lorenzo)、莫妮卡 (Monica) 以及 Trentino Salute 4.0 团队的其他成员,我非常感谢他们在一个对我来说完全陌生的环境中给予我的欢迎,以及他们为我提供的无数跨学科融合的机会。出于同样的原因,我将永远感激 Paolo、Giorgia 和 Federico,他们和我一样都是与基金会有联系的法学家,为我提供了取之不尽的思想、激励和建议。此外,我还得到了慕尼黑马克斯普朗克社会法和社会政策研究所以及哥本哈根大学生物医学创新法中心研究人员的大力帮助,他们使我在国外的研究期间成为与其他法系的法学家交流的宝贵机会。对于这些机会,我首先要感谢 Ulrich Becker 教授、Timo Minnsen 教授和 Marcelo Corrales Compagnucci 教授,他们负责这些中心并给予了我热烈的欢迎。然后,还有我的家人——自从我出生以来,他们一直默默地支持和忍受着我——还有我的朋友,所有人。安吉拉、安娜、克劳迪娅、克劳迪奥、达维德、弗朗西斯科、弗朗西斯卡、乔治奥、乔瓦尼、朱利奥、艾琳、卢卡、玛蒂娜、罗伯托以及其他从小就陪伴我走过道路的人;安娜、阿尔贝托、安东内拉、基娅拉、克里斯蒂安、克拉拉、费德里科、乔治娅、朱莉娅、米歇尔、奥兰、萨拉、西蒙娜,他们是后来才来的,但在我看来,他们一直都在那里; CNR 的人;马里奥 (Mario)、亚历山德罗 (Alessandro) 和 Dinamo Kave 的所有人;因为足球,队友们成为了旅途中的伙伴; Berdien、Federico、Giovanni、Marta 和 Matteo,感谢这个世界上罕见的真挚友谊;我已不再见到他,但对他的记忆将永远使这些年变得特别。最后,埃琳娜。她知道为什么。
指示与上层量子算法所期望的相比,可观测量当前是否为负。在跟踪等效可观测量的各种选择之间的一个关键区别是,不同的选择可以有不同的副产品算子。从一种逻辑可观测量的选择转移到另一种逻辑可观测量是一种簿记操作,其中副产品算子之间的关系由分离可观测量的稳定器的测量结果决定。因此,最终,在空间中移动逻辑可观测量归结为将许多稳定器测量的贡献正确地乘以其副产品算子。例如,考虑一个具有逻辑可观测量 XL = + X 1 X 2 X 3 和测量的稳定器可观测量 XS = + X 1 X 2 X 4 X 5 的系统。假设稳定器测量结果在误差修正后为 − 1 ,这意味着您确信 − XS = +1 。根据此信息,你可以得出 XL = XL · +1 = XL · − XS = − X 3 X 4 X 5 。换句话说,XS 告诉你如何用量子位 3、4 和 5 而不是量子位 1、2 和 3 来表达逻辑可观测量 XL。它允许你将逻辑可观测量从由量子位 1、2 和 3(使用副积运算符 +1)支持移动到由量子位 3、4 和 5(使用副积运算符 − 1)支持。在现实场景中,由于代码距离大或路由距离长,移动逻辑可观测量将涉及将数百甚至数百万个稳定器乘以可观测量的副积运算符。如果这些稳定器的任何一个(或三个、五个等)测量值错误,则移动的逻辑可观测量的符号将是错误的。这是一个逻辑错误;这将导致灾难性的情况,即量子计算机执行的上层算法将默默地产生糟糕的结果。计算稳定剂的大型乘积与容错量子计算的相关性在量子纠错领域是众所周知的 [ RHG07 ;Hor+12 ;Cha+22 ;CC22b ;CC22a ]。移动逻辑可观测量需要将许多稳定剂相乘,如果将所有东西永远放在同一个地方,就不可能进行任何计算。因此,能够可靠地计算巨大的稳定剂乘积极其重要。鉴于这些事实,奇怪的是没有完善的实验来直接验证计算大型稳定剂乘积的能力(类似于记忆实验是直接验证随时间保存量子比特的能力的完善基准 [ GQ21 ;Rya+21 ;Zha+22 ;Kri+22 ;And+20 ])。本文提出的实验类型“稳定性实验”的目标就是填补这一空白。从高层次来看,稳定性实验实际上与记忆实验非常相似(见图 2)。记忆实验之所以有效,是因为它们设置了一个跨时间的全局不变量的情况,然后检查该不变量。不变量是指在时间结束时测量的状态应该与在时间开始时准备的状态相匹配。这使得记忆实验有些退化。测量结果是提前知道的,因此在算法上不需要在运行时执行所有那些昂贵的量子操作。在大型量子计算中,你会希望优化掉任何看起来像记忆实验的东西。稳定性实验也通过创建和验证全局不变量来工作。主要区别在于,稳定性实验不是使用跨时间的全局不变量,而是设置一个跨空间的全局不变量的情况。具体来说,在稳定性实验期间,稳定器区域的乘积的正确值是提前知道的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会希望优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这样您就可以确定您的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到逻辑量子位正确移动的期望确定性水平。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面代码斑块的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离在稳定性实验中,稳定器区域的乘积的正确值是预先已知的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会想要优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这可以让你确定你的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到所需的确定性水平,即逻辑量子位被正确移动。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面码斑的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离在稳定性实验中,稳定器区域的乘积的正确值是预先已知的。这使得稳定性实验有些退化,就像记忆实验一样,在实践中,在大型量子计算中,你会想要优化掉任何看起来像稳定性实验的东西。不过,通过避免删除退化的冲动,你可以将运行时计算的乘积与已知的正确值进行比较。这可以让你确定你的纠错系统在快速确定稳定器区域的这些乘积方面有多好。有几个原因值得对稳定性实验的结果感兴趣。例如,稳定性实验可用于确定需要多少轮才能达到所需的确定性水平,即逻辑量子位被正确移动。更一般地说,稳定性实验可用于量化“类时码距离”(稳定器测量重复的次数)是否需要小于或大于“类空码距离”(表面码斑的直径)。通常假设这些数字是相同的,但没有严格的理由要求它们必须相同。图 2 给出了对稳定性实验感兴趣的更抽象的理由:稳定性实验隐藏在常见量子计算的拓扑时空图中。对稳定性实验感兴趣的最后一个原因是,由于其代码距离因为它的代码距离因为它的代码距离