结果:我们的结果表明,对三种根瘤菌的接种并没有增强植物总生物量,而它显着影响了植物建筑,生态生理学和代谢反应。与JP根瘤菌组接种的接种导致根生物量显着增加,从而导致较小的叶子和较高的叶子数。这些形态学的变化表明,改善了取水和温度调节策略。此外,在接种了来自PJ和PL的微生物组的植物中观察到了不同的气孔电导模式,表明对干旱胁迫的反应发生了改变。代谢组分析表明,根瘤菌的移植显着影响了S. officinalis的叶片代谢组。所有三个根瘤菌促进了酚类化合物,萜类化合物和生物碱的积累,已知在植物防御和应激反应中起着至关重要的作用。五个分子(Genkwanin,β-离子酮,苏莫醇,β-贝氏蛋白贝苯胺A-甲基酯和cinnamoyl-beta-d-d-葡萄糖苷)通常积聚在接种的鼠尾草叶片中,与微生物组无关。此外,根据特定的接种根瘤菌组观察到独特的代谢改变,强调了植物 - 微生物相互作用的专业性质,并可能将这些特定分子用作监测有益微生物的募集的生物标志物。
植物通过抑制小污染物的α-葡萄糖苷酶来预防糖尿病[6],抑制唾液腺α-淀粉酶[7],增强胰岛素分泌[8],减少HBA1C和糖化的Plasma蛋白[9],增加了葡萄糖型胰蛋白肽-1,并升高了胰蛋白肽-1,并降低了葡萄糖般的肽-101010010010] [10] 10]Sage(Salvia officinalis L.)是属于Labiatae/Lamiaceae家族的多年生圆形灌木[11]。它因其抗氧化特性而被广泛认可,并且已经鉴定出最活跃的成分[12]。民间医学治疗不同的疾病,包括癫痫发作,溃疡,痛风,风湿病,炎症,头晕,震颤,瘫痪,腹泻和高血糖症。文献表明摄入鼠尾草没有不利影响[11]。它也用于治疗肾脏和胆囊结石,心脏病,神经疾病,头痛,胃痛,腹痛和其他健康困难。一些文化使用新鲜的叶子来减轻低血压和呼吸系统问题[13]。此外,它具有抗炎,抗菌,抗肿瘤和抗糖尿病特性。此外,它提高了认知能力和记忆能力,并可能预防或治疗阿尔茨海默氏病[14]。S。officinalis也可以减轻腹泻和更年期症状[15]。officinalis提取物抑制了与代谢相关的单胺神经递质相关酶,表明可能在先前观察到的改善的多巴胺能,血清素能和胆碱能作用的可能性[16]。Alharbi等。[17]报告说,含有officinalis链球菌提取物的发酵骆驼奶可保护大鼠免受糖尿病和氧化应激。
摘要:糖尿病(DM)是一种代谢性疾病,发病率令人震惊,对患者的生活和医疗保健提供者负担很大。血糖水平和胰岛素耐药性的增加表征了它。内部和外部因素,例如城市化,肥胖和遗传突变可能会增加DM的风险。通过免疫和营养,肠道影响整体健康状况的微生物。最近,已经进行了更多的研究,以评估和估计肠道微生物组在糖尿病发育,进展和管理中的作用。这篇评论总结了目前有关三个主要细菌物种的知识:青少年菌,双杆菌双杆菌和鼠尾草乳杆菌及其对糖尿病及其潜在的分子机制的影响。大多数研究表明,使用这些细菌物种会阳性地降低血糖水平并激活炎症标志物。此外,我们报告了这些细菌物种与二甲双胍之间的关系,二甲双胍是常用的抗糖尿病药物之一。总的来说,需要更多的研究来了解肠道微生物组对糖尿病发展的影响。此外,需要做更多的努力来标准化所使用的模型,集中范围和解释工具,以进一步推进领域。
在这项研究的聚光灯下,我想突出显示爱达荷州博伊西ARS西北流域研究中心(NWRC)的Unocupie D空中系统(UAS)研究计划的Scinet资源。NWRC的科学家使用UAS研究鼠尾草主导的牧场的长期植被动态。多光谱,高光谱和自然色图像被收集以研究火,放牧和侵入性杂草侵占的影响。自2017年以来,已经收集了大量的UAS数据,并且在Scinet高性能计算(HPC)簇,ATLAS和CERES上可重现的简化处理工作流程对于始终如一地处理这些数据是必要的。HPC图像处理教程,支持代码和参考材料都可以在Scinet的GeoSpatial Workbook网站上找到。这些资源大大提高了HPC群集的可访问性,用于需要处理UAS数据的新个人和经验丰富的个人。教程不仅提供了必要步骤的概述,其中包括示例,代码片段和动画,而且还提供了有关HPC编程的丰富知识。在过去的几年中,首选,OCIO批准的UAS处理软件已更改为开源OpenDroneMap(ODM),这些教程为在Scinet Resources上实施此软件铺平了道路。
摘要:合成化学表面活性剂(SCSS)是从化石燃料前体合成的一组用途的两亲性化学物质量,这些化石燃料前体已在各种工业应用中发现使用。它们的全球用法估计每年超过1500万吨,这导致环境破坏和对人类和其他生物的潜在毒理学影响均未减弱。当前的社会挑战以确保环境保护并减少对有限资源的依赖,导致人们对可持续和环保替代品(例如生物性活性剂)的需求增加,以取代这些有毒的污染物。生物表面活性剂是可生物降解,无毒的,并且通常在环境上兼容的两亲性化合物。尽管微生物生物表面活性剂替换SCSS的潜力巨大,但与SCS相比,限制其商业化的主要挑战限制其商业化的收益率和生产成本的大量成本。在这篇综述中,我们讨论了SCSS的释放,废水处理厂(WWTPS)是其释放到海洋的主要点来源,然后我们深入研究了这些污染物对海洋生物体和人类的后果。然后,我们探索微生物生物表面活性剂作为SCSS的替代品,重点是鼠尾草脂质,并以对当前和未来的工作进行商业化微生物生物性生物性侵蚀剂的一些观点结束。
牧场碳通常与强化管理的农业土地相似地概念化,因为我们需要隔离和存储更多的碳。与强化管理的农业土地不同,由于受植物群落和微生物社区动态的影响,牧场土壤不能使更多的碳隔离。这需要一个新的牧场碳范式,该范围侧重于在诸如火灾和植物社区转换之类的干扰之后(例如,年度草原和针叶树林地)保持碳安全性。为了实现这一目标,我们建议创建碳安全指数(CSI)。csi是一种无单位的可扩展值,可用于比较范围内的碳安全性,并随着时间的流逝,并结合了植物分数覆盖率,电阻和弹性以及野生概率。使用大盆地作为案例研究,我们发现CSI从1989年到2020年降低了53%的盆地。使用Sagebrush保护设计的鼠尾草生态完整性 - 大盆地中的cate-cate cate cate cate cate cate cate cate cate cate cate cate of,在1998年至2020年之间,“核心”地区的CSI在“核心”地区保持相对不变(减少了1%),而“增长机会”地区CSI地区CSI开始变化(减少13%),而“其他Rangeland降低了CSI降低” 67%。我们发现,CSI能够充当确定碳安全性何时在发生野生障碍之前几年下降的指导者,然后迅速降低了CSI。最后,我们创建了一个碳安全管理图,以帮助优先考虑潜在管理,以实现最大的碳安全性和修复位置。这些结果表明,CSI为土地所有者和土地经理提供了评估其碳在土地上的安全性并帮助他们优先考虑恢复区域的机会。由Elsevier Inc.代表范围管理协会出版。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
摘要大约20年前,欧盟引入了转基因作物生长的复杂监管规则,这实际上是在大多数欧洲国家中的事实上禁止在大多数欧洲国家中种植这些植物。随着新型基因组编辑技术的兴起,以遗传方式改善农作物而无需掺入外源基因的可能性。不幸的是,在2018年,欧洲法院裁定该基因编辑的植物将像转基因植物一样受到调节。从那以后,欧洲科学家和育种者对这一决定提出了质疑,并要求对这一过时的法律进行修订。最后,在5年之后,欧洲委员会现在发表了一项关于如何调节新育种技术生产的农作物的建议。该提案试图在欧洲不同利益群体之间找到平衡。在一侧,基因修饰的植物无法与天然对应物识别出来,将仅用于食物和饲料,除了注册步骤外,还不应受到调节。在另一边,表达除草剂耐药性的植物将被排除在该法规之外,对欧洲强大的环境协会和非政府组织的特许权。此外,应将编辑的农作物排除在有机农业之外,以保护欧洲强大的有机部门的商业利益。尽管如此,如果该法律通过欧洲议会和理事会(不变),它将朝着建立更可持续的欧洲农业体系迈出一大步。但是,除了通过法律,还有很长的路要走。因此,很快就有可能开发和种植更适合全球变暖的农作物,其培养将需要较低的鼠尾草。经常,基于对突变的非理性恐惧和对自然的天真理解,反对者提出的争论风暴落在了欧洲的富有成果的基础上。
摘要:随着解释机器学习(ML)模型的兴趣越来越多,本文综合了许多与ML解释性相关的主题。我们将解释性与解释性,本地解释性以及功能重要性与功能相关性区分开。我们演示和可视化不同的解释方法,如何解释它们,并提供完整的Python软件包(Scikit-templain),以允许未来的研究人员和模型开发人员探索这些解释能力方法。解释性方法包括Shapley添加性解释(SHAP),Shapley添加剂全球解释(SAGE)和累积的局部效应(ALE)。我们的重点主要放在基于沙普利的技术上,这些技术是增强模型解释性的各种现有方法的统一框架。例如,制造一致的方法,例如可解释的模型 - 不合Snostic解释(lime)和树解释器,用于局部解释性,而鼠尾草则统一了对全球解释性的置换重要性的不同变化。我们提供了一个简短的教程,用于使用三个不同数据集解释ML模型:用于对流的模型数据集用于恶劣天气预测,一个用于子冷冻道路表面预测的幕后数据集,以及用于雷电预测的基于卫星的数据。此外,我们还展示了相关特征对模型的解释性的不利影响。最后,我们演示了评估特征组的模型图案而不是单个特征的概念。评估特征组可减轻特征相关性的影响,并可以对模型提供更全面的理解。本研究中使用的所有代码,模型和数据都可以自由使用,以加速大气和其他环境科学中的机器学习解释性。
B细胞成熟抗原(BCMA)是多发性骨髓瘤(MM)中嵌合抗原受体(CAR)T细胞疗法的铅抗原。挑战是在治疗压力下在MM细胞和BCMA下调的BCMA表达中的患者间异质性和患者内异质性。因此,在接受BCMA-CAR T细胞疗法的患者中,人们希望增加和维持MM细胞的BCMA表达。我们使用全反式视黄酸(ATRA)来增强MM细胞上的BCMA表达,并在临床前模型中增加BCMA-CAR T细胞的效率。我们表明,ATRA处理通过定量逆转录聚合酶链反应导致BCMA转录本的增加,并通过MM细胞系和原代MM细胞中流量细胞仪的BCMA蛋白Ex压缩增加。用超分辨率显微镜确认的分析增加了BCMA蛋白的表达,并在ATRA处理后揭示了非簇的BCMA分子在MM细胞膜上的均匀分布。ATRA治疗后,MM细胞上的BCMA表达增强,导致BCMA-CAR T细胞的细胞解,细胞因子的分泌和体外的BCMA-CAR T细胞的增殖,并增加了MM In Vivo(NSG/MM.1S)鼠尾草模型中BCMA-CAR T-CELL疗法的效率。组合MM细胞用ATRA和γ-泌尿酶抑制剂CrenigAcestat进一步增强了BCMA表达和BCMA-CAR T-Cell T-Cell在体外和体内的效果。在一起,数据表明,ATRA处理会导致BCMA在MM细胞上的表达增强,并巧妙地调节BCMA-CAR T细胞的反应性增强。数据支持ATRA与BCMA-CAR T细胞治疗以及其他BCMA指导的免疫疗法的临床评估。
国家免疫技术咨询委员会(NITAGS)的任务是指导其政策制定计划中的卫生和国家免疫计划。许多Nitags依靠世界卫生组织(WHO)战略专家(SAGE)对免疫的审查的证据,并旨在适应谁的建议对各自的情况。自从Covid-19大流行病发作以来,这种关系具有非凡的重要性,在此期间,Nitags在面对供应限制以及复杂的程序化和善良的物流时表达了一场明显的斗争,以制定适当的人口促进和疫苗利用的政策。进行了此在线调查,以评估Sage指导文件的Covid-19疫苗政策的有用性,并研究Nitags面临的持续需求和挑战。结果证实了有关Covid-19疫苗的SAGE建议易于获取,理解和适应。在鼠尾草面临的数据和时间限制的情况下,它们被发现是全面的,及时的。与偏爱谁国家或地区的低收入国家相比,全球NITAG网络(GNN)似乎是解决高收入国家之间问题的最受欢迎的工具。nitags在与其他Nitags的互动上具有很大的价值,这需要便利,并且可能会带来更多的机会,尤其是在地区内。进一步指出,某些Nitags通常不得不解决sage通常不考虑的大流行期间,例如供应链物流和疫苗需求。从COVID-19的经验中学习提供了通过开发更具体的程序以及考虑更多不同类型的数据,包括实施有效性和吸收数据,可以增强NITAG和大流行恢复工作。也有机会越来越多地参与人员支持Nitags的国家,同时确保国家的信息和证据需求得到充分反映在Sage审议中。2022由Elsevier Ltd.