摘要 润滑剂不足会导致润滑状态从(弹性)流体动力学转向边界条件的风险。在这些条件下,有效的摩擦膜形成对于限制表面损伤至关重要,但缺乏用于太空级润滑剂的添加剂技术。这项工作评估了一种新型多功能离子液体润滑剂与多烷基环戊烷 (MAC) 一起使用的可行性。执行器齿轮箱在氮气氛围中的缺油条件下运行,以评估摩擦膜形成润滑剂(指定为 P-SiSO)的有效性。通过使用显微镜(光学、干涉、SEM)和 X 射线微断层扫描 (XMT),从宏观到微观尺度在表面和亚表面分析中评估了 P-SiSO 的有效性,并讨论了有效润滑的机制。
M 齿轮油 类型 Mobilgear SHC XMP 320 齿轮箱与发电机之间的联轴器:类型 CENT ALINK 扭转刚性狗骨联轴器 制造商 CENTA 图纸编号 019-64489-000-xxx 修订版 C 发电机:制造商 ELIN Motoren 型号 双馈异步感应式发电机 类型 MRM-063 Z06 额定功率 3200 kW(功率提升 3300kW) 额定电压 690 V (±10 %) 额定电流 2939 A 额定转速 1200 rpm 运行转速范围 620 至 1380 rpm 工作制类型 Sl e 绝缘等级 定子-F;转子-H 防护等级 IP 54/IP 23(滑环) 冷却系统 水冷(水-空气热交换器) 转子制动器:类型 JHS-300/30
在飞机和发动机的各种系统中使用电力技术被认为是改善其基本特性最有前途的方向之一[1]。根据“全电动飞机”的概念,电能将应用于飞机的所有系统,包括燃气涡轮发动机的动力装置,目前仍使用液压和气动装置。“电动”燃气涡轮发动机(EGTE)无需压缩机和附件齿轮箱(AGB)的空气选择即可实现,它们驱动发动机和飞机的装置:泵、发电机、恒速旋转驱动器等。在其系统中,使用电动装置来驱动燃油泵和气路机械化装置。对于发动机转子的减重,有两种选择:使用普通滚动轴承和电动机驱动的润滑系统,以及使用不需要润滑的磁轴承。第二种选择前景更渺茫,因为制造难度较大
本文对中空轴断裂进行了分析。本文报道了一起双引擎教练机事故的调查。事故发生的原因为右发电机失灵和油压过低。根据警告和后续事故,确定了主要故障。故障涉及 J85 涡喷发动机附件驱动齿轮箱 (ADG) 和输入驱动组件 (IDA) 上的中空轴的疲劳断裂。确定断裂是由扭转载荷作用于连接 ADG 和 IDA 的中空轴引起的。由于载荷超过了制造商作为系统保护部件设计的极限值,中空轴断裂。虽然成功确定了主要故障,但对断裂的触发原因进行了进一步分析。通过详细的断口和金相研究,确定了断裂的根本原因是作为驱动单元的 ADG 和作为驱动单元的 IDA 之间的中空轴未对准。
条件监测盟友的预测维护行业所使用的设备避免了称为纠正措施的维护,这反过来又可能造成严重的经济损失。使用行业概念4.0作为人工智能来预测和检测此类设备中的故障,从而增加了系统挑战。这项工作着重于应用机器学习技术,例如支持向量机(SVM),随机森林,最近的KNN-LITTLITER(KNN),多层Perptron(MLP),线性回归等,以预测和检测两种工业设备的故障,旨在比较这些技术的性能。根据传感器收集的数据,使用了该设备的工业齿轮箱,用于该设备,使用监督的分类算法来检测可能的故障。获得的最佳结果是使用SVM和MLP算法。第二个工业设备是一种工业切割刀片,因为使用该设备有监督的算法,这种方法与第一种方法不同,因为可以预见的数据是传感器的数值,所执行的最佳预测是使用线性回归的算法。
14 个月前 OBDURATE 正在护送前往俄罗斯的护航队,时速 11 海里。9 时,在右舷约 20 英尺处与后鱼雷发射管并列的位置发生了严重的水下爆炸« 爆炸使右舷大厅板在框架 9 纵梁和纵梁之间凹陷,与发动机室和齿轮室并列« 上层和下层甲板以及后油箱附近的舱壁弯曲和拉紧« 发动机室和齿轮室的轻微洪水以及后油箱到齿轮室的泄漏得到控制,右舷立柱块和压盖空间以及轴管充满了燃油« 所有右舷 H0 P 0 涡轮机脚和 L«P« 涡轮机的后脚断裂,齿轮箱也开裂。辅助机械受到冲击损坏,导致右舷主循环器和辅助循环器以及 10 Kwc 辅助发电机停止运行« 右舷立柱块变形,损坏后,左舷主发动机产生振动。电气设备受到轻微不重要的冲击损伤« 两个双联 0o5 英寸机枪支架均发生变形«
AG 农业 AGB 附件齿轮箱 AMM 机身维护手册 BOV 排气阀 CCW 逆时针 CW 顺时针 CSU 恒速装置(螺旋桨调速器) CT 压缩机涡轮 ECTM 发动机状况趋势监测 ESHP 等效轴马力 FCU 燃油控制单元 FI 飞行怠速(高怠速) FOD 异物损坏 GI 地面怠速(低怠速) HSI 热区检查 IAS 指示空速 IBR 整体叶片转子 ISA 国际标准大气 ITT 涡轮间温度(T5) MM 维护手册 MOP 主油压 MOT 主油温 Nf 自由涡轮转速 Ng 燃气发电机转速(N1) Np 螺旋桨转速(N2) OAT 室外空气温度 OSG 超速调速器 P0 旁路燃油压力 P1 燃油泵输送压力 P2 计量燃油压力 P2.5 压缩机(轴向级)排气压力(站 2.5) P3 压缩机排气压力(站 3)
• TOKU 高品质叶片电机和行星齿轮箱,配备长寿命润滑脂 • 负载限制器 • 高强度铸钢外壳,经久耐用 • 结构紧凑、重量轻,易于操作 • 延长工作周期和频繁反转 • 可变速度,可准确升降 • 带安全锁的合金钢钩(底部钩配有推力轴承,操作方便) • 可调节负载限制器(不适用于 TMM、TCR Mini 或 TCS) • 故障安全自动盘式制动器(全封闭)确保断电时负载不会掉落 • 紧急停止 • 机械上限和下限提升限位 • 提升高度可满足您的需求 • 可选择绳索、吊坠控制或控制系统 • 噪音低至 80 dB(消音器和过滤器易于更换) • 空气消耗低(TCR 和 TMH 型号) • 气压从 0.4 到 0.63 MPa • 在恶劣环境下耐用 • 维护成本低 • 在适当条件下易于获得备件 • 提升机机身在日本制造,其他所有部件在欧洲制造 • 欧洲/日本制造的高品质校准负载链具有 5:1 FOS • 高速(TCS 和 TMH 型号) • 特殊设计的起重机和小车 • 符合 EC 指令 2014/34/EU 的 Ex 分类 (ATEX
起重机现代化 – 原因和方式?由技术总监 Peter M. Darley 和市场总监 Jimmy Liang 在 1998 年 TOCASIA 上介绍 1.0 简介 起重机现代化是指对起重机进行改造、翻新或升级,以提高生产率、可靠性和安全性、增强可维护性或克服采购过时备件的困难。现代化的范围可能包括结构尺寸变化、机械系统升级或电气和驱动控制升级。本文主要参考集装箱装卸起重机,包括岸边起重机、轮胎式龙门起重机 (RTG) 和轨道式龙门起重机 (RMG)。为了区分小改进和重大升级,我们将重大起重机升级定义为价值 400,000 美元及以上的工作。这样的价值可以涵盖基本的起重机驱动改造(不更换直流电机)或跨度变化或主提升传动系统升级(例如更换齿轮箱、制动器、联轴器、绳索绕线系统等)。1.1 中东/印度次大陆的起重机年龄分布 目前,中东/印度次大陆地区有近 200 台码头起重机在运行。这些起重机的年龄分布如下: 1976 年之前 1976-80 1981-85 1985 年后 总计(台)