超高性能钢筋混凝土 (UHPC) 是一种先进的水泥基材料,具有出色的机械性能、显著的耐久性和延展性。有限元 (FE) 分析速度快、价格合理,并且能够提供多种结果选项,因此可用于评估不同载荷下的各种结构系统。在市售软件中,ABAQUS 已被广泛用于模拟混凝土构件的行为。混凝土损伤塑性 (CDP) 模型是 ABAQUS 中的旗舰模型,也是唯一适合充分表示混凝土类材料的脆性、开裂和压碎破坏的本构模型。由于模型输入是专门为传统混凝土开发和校准的,因此它们可能不适用于 UHPC。特别是与剪切和拉伸行为相关的模型输入在传统混凝土和 UHPC 之间可能有所不同,前者中的骨料提供剪切机械联锁,而后者则缺乏这种联锁,而后者中的纤维提供拉伸桥接效应和显著的应变软化,而前者则不存在这种联锁。本研究旨在校准 UHPC 的 CDP 模型的各种参数,包括膨胀角 (ψ)、偏心率 (e)、应力比 (σbo/σco)、拉伸和压缩应力-应变 (σ-ε) 曲线。针对多个轴向压缩试验的验证分析表明,ψ = 55 ̊、σbo/σco = 3.00 和 e = 0.1 的值代表 UHPC 的最佳输入。在本研究中尝试的多个可用于 UHPC 的分析模型中,(a) Graybeal 的修改后峰后响应模型和 (b) Zhao 等人的模型在 ABAQUS 中实施时为 σ-ε 曲线提供了最佳性能。
摘要:复合材料层压板在制造和应用过程中产生的缺陷对复合材料结构的性能有很大影响。这些不良缺陷对静态和疲劳力学行为的影响在可靠性和可持续性评估中非常重要。从计算机断层扫描 (CT) 扫描到多尺度建模,开发了一种综合方法来评估主要缺陷,包括空隙和层板波纹。基于 CT 扫描结果,可以定量捕获空隙和层板波纹。可以使用表示体积元 (RVE) 模型和微观统计模型来分析这些缺陷,并使用可能性不确定性模型将它们对材料特性 (刚度、强度和断裂韧性) 的影响纳入宏观尺度模型。可以通过图像处理方法提取层板波纹信息,并在具有弯曲层板界面的有限元模型中明确描述它。可以使用自动网格生成方法,根据应力分析将粘结元素选择性地插入到关键界面中。利用混合规则考虑了孔洞和层板波纹对复合材料板层体积分数的影响。利用四点弯曲下的L形梁试验数据验证了综合方法的有效性。
摘要在这项工作中,采用了Abaqus AM建模者来模拟定向的能量沉积(DED)增材制造过程。建模器提供了一个自动接口,以开出施加的工具路径和过程条件。尽管可能需要一些努力才能了解如何使用这种元素 - 出生技术方法,但是如果您想模拟加法制造或类似流程,绝对值得付出努力。两个事件系列被用于规定材料沉积和热输入。使用自动元件激活序列用于制造薄(4×20×50 mm)和厚(12×20×50 mm)的壁成分的薄(12×20×50 mm)。要近似3D打印层构建的过程,每次扫描后,填充金属在行中逐行铺设,该组件由连续的10层(每个构建层的深度为1个元素至深度),每个层都有25个连续的元素行。一旦沉积第一层,能源和喷嘴向上移动以存放下一层,然后重复该过程,直到完整的3D对象被制造为止。发现,要模拟以时间和空间依赖空间添加材料和热量的问题,使用 *元素渐进激活选项的使用要比其对应方 *模型更改要简单得多。AM Modeler有助于正确地定义所需的数据以简单的方式近似3D打印层构建的过程。用Python语言创建了一个激光路径脚本,以允许能量源和喷嘴的路径。已建立了DED过程中打印参数(原料和热输入)的正确组合。
• 支持虚拟测试 – 快速创建通用加固面板模型 – 复合材料工具 – 包含在 Abaqus 环境中,作为带有 GUI 的插件
使用ABAQUS模拟的基于通道的疲劳计算产生多轴应力,考虑了诸如触点,超弹性和大变形之类的非线性 - Stefan Kaindl,工程中心Steyr GmbH
是的,您可以继续使用现有的 Abaqus 工具,但现在您可以在 3D EXPERIENCE 平台上以前所未有的方式使用这些工具,以实现协作、共享和模拟管理。R2018X 现在支持平台上许多 SIMULIA 独立产品的连接 - 包括用于结构的 Abaqus、用于流体的 XFlow、用于多体模拟的 Simpack 和用于电磁学的 CST STUDIO SUITE。您可以捕获和发布最佳实践,共享和协作结果和方法,并与团队中的非专家完全集成。这使您的工作立即变得更加可见,从而更有价值,而不会破坏现有的方法和工具。它允许您执行端到端行业工作流程,包括原生 3D EXPERIENCE 和独立工具。
是的,您可以继续使用现有的 Abaqus 工具,但现在您可以在 3D EXPERIENCE 平台上以前所未有的方式使用这些工具,以实现协作、共享和模拟管理。R2018X 现在支持在平台上连接许多 SIMULIA 独立产品 - 包括用于结构的 Abaqus、用于流体的 XFlow、用于多体模拟的 Simpack 和用于电磁学的 CST STUDIO SUITE。您可以捕获和发布最佳实践,分享和协作结果和方法,并与团队中的非专家完全集成。这使您的工作立即变得更加可见,从而更有价值,而不会破坏现有的方法和工具。它允许您执行端到端行业工作流程,包括原生 3D EXPERIENCE 和独立工具。
摘要 — 本文介绍了一种使用 Abaqus 对新型建筑起重机进行设计和 FEM 分析的方法。其目的是研究目前使用的传统建筑起重机,并用廉价、安全、可靠的建筑起重机取而代之。这些传统起重机由桉树脚手架制成,用于建造塔架,塔架上装有用于引导小车和吊钩组的悬臂部分。吊钩组在悬臂小车臂上移动,不旋转。悬臂小车臂是起重机的一部分,用于承载重量。带有滚筒的电机通过钢缆输送建筑材料。在 Solid Works 建模软件中创建了三维实体零件,并将其导出到 Abaqus 进行应力分析。在运行过程中,迫使进行静态和动态载荷的最危险条件单词 - 建筑塔起重机,乳房钻头,副吉布起重机,FEM分析
环氧复合材料填充了不同量的橡胶颗粒和无骨料的纳米颗粒,以检查多相颗粒对复合材料机械性能的协同作用。在这项工作中,使用ABAQUS中的扩展有限元方法模拟裂纹传播(生长),并将位移,压力和裂纹传播的结果与实验结果进行比较。这项研究的主要目的是评估有限元方法的性能,预测结果所需的要素的数量以及扩展有限元方法预测裂纹传播行为的能力。本研究研究了裂纹传播位移和计算网格独立性中所需的元素数量,还比较了Abaqus中2D中纳米颗粒增强的环氧聚合物获得的数值和实验结果。颗粒分离和裂纹繁殖,在拉伸模拟过程中吸收能量,可以在表面硬化和增强中起关键作用。该模拟证实了纳米复合界面的弱化和加强机制,并证明了扩展有限元方法是模拟纳米复合材料的机械行为的有效方法。关键字:CACK传播; XFEM;强化;环氧树脂;纳米复合
申请人应具有机械工程、航空航天工程、船舶与海洋工程、土木工程和材料科学等专业的学士学位。具有硕士学位的研究生优先考虑。在以下领域有研究经验者将有很大优势:复合材料(制造/测试/分析)、FEA 模拟(使用 Abaqus/Ansys/LS-Dyna/COMSOL/内部代码)、科学编码(数值算法、网格生成、数据可视化等)