针对空间碎片问题,本文设计了一种薄膜捕获袋系统。与空间绳网相比,薄膜捕获袋具有更高的柔性和可靠性。薄膜捕获袋系统中含有许多柔性结构,在运动过程中易发生较大的变形和振动,这些变形对服务航天器造成较大的扰动,需要建立准确的刚柔耦合动力学模型对扰动进行定量分析。首先,采用高阶绝对节点坐标公式建立薄膜动力学模型;其次,采用快速非奇异终端滑模控制器和固定时间膨胀观测器(FxESO)设计姿态跟踪控制律;最后,结合动力学和控制原理,建立了带有薄膜捕获袋系统的航天器虚拟样机。仿真结果表明,与ABAQUS有限元分析相比,高阶绝对节点坐标公式单元具有更好的收敛性;同时,该动力学模型模拟了航天器机动过程中大型柔性结构的变形和振动状态,FxESO可以估计并补偿复杂的扰动。快速非奇异终端滑模+FxESO控制律下的误差收敛速度比非奇异终端滑模+扩展观测器控制律更快,最终航天器姿态跟踪误差约为10 −4,证明了该控制器的有效性。
摘要。本文比较了两种具有不同细节级别的数值方法,用于模拟接受单搭接剪切试验的弯曲砌体支撑。砌体柱在拱顶和拱腹处用 TRM 材料加固,TRM 材料由嵌入 10 毫米厚砂浆层的 100 毫米宽 PBO 织物组成。使用两种方法进行数值分析:非均质微建模 FE 方法和弹簧模型方法。第一种建模策略是使用商业软件 Abaqus 开发的,它涉及组成材料(即砖和砂浆接缝)的单独建模以及 PBO 织物和砂浆基质的模拟。第二种方法是专门为分析弯曲支撑而开发的,它包括采用等效法向弹簧和剪切弹簧来模拟试件的组成部分(支撑、基质和钢筋),以及钢筋和基质之间的界面。值得一提的是,这项数值研究是正在进行的实验和数值研究的一部分,该研究重点是分析弯曲脆性支撑对创新强化材料(即 FRP)粘附性能的影响,并在此扩展到采用 TRM 复合材料。由于缺乏对 TRM 组成材料的全面实验表征,因此纺织品和砂浆基质的机械性能是根据制造商提供的可用数据推导出来的。本文介绍了数值结果,并根据模拟结束时获得的整体力-位移曲线和损伤图进行了严格比较。
铅橡胶地震隔离轴承(LRB)已安装在许多必不可少的和关键的结构中,例如医院,大学和桥梁,以便为它们提供延长的时间延长,并具有相当多的能量来减轻强大地面运动的影响。因此,研究这种设备的损坏力学对于理解和准确描述其热机械行为至关重要,因此可以更安全地设计地震隔离结构。迄今为止,LRB的滞后行为已使用1)牛顿力学和经验曲线拟合降解函数进行建模,或者2)热传导理论和理想化的双线性曲线,包括降解效应。使用本质上是现象学或包含一些调整后参数的模型的原因是,牛顿的普遍运动定律缺乏解释系统降解和能量损失的术语。在本文中,统一的力学理论(整合了热力学定律和牛顿力学),用于对LRB的力解散响应进行建模。的确,曲线拟合技术不需要描述其损伤行为,因为使用沿热力学状态指数(TSI)轴的熵产生计算降解。在Abaqus中构建了铅橡胶轴承的有限元模型,在该模型中,实现了用户材料子例程UMAT来定义统一力学理论方程和铅的粘膜塑料本构模型。有限元分析结果与实验测试数据进行了比较。
在过去的几十年中,已经开发了一个假定的固体 - 壳有限元素的家族,并具有固体和壳有限元素的丰富益处以及特殊处理,以避免锁定现象。这些元素已被证明在具有各种本构模型的薄3D结构的数值模拟中是有效的。当前的贡献包括发达的线性和二次固体 - 壳元素与铝合金的复杂各向异性可塑性模型的组合。常规二次各向异性产量函数与涉及强各向异性的金属材料形成过程的模拟中的准确性较小。对于这些材料,可以使用晚期非二次产量功能(例如Barlat针对铝合金提出的各向异性产量标准)对塑料各向异性进行建模。在这项工作中,将各种二次和非季度各向异性屈服函数与线性八节点六个节六个固体 - 壳元素和线性六节点棱柱形固体 - 壳元素以及它们的二次对应物结合使用。将所得的固体 - 壳元素实现到Abaqus软件中,以模拟圆柱杯的基准深度绘图过程。对预测结果进行了评估,并将其与文献中获得的实验结果进行了比较。与使用常规二次各向异性产量函数相比,由开发的固体 - 壳元素与非二次各向异性产量功能的组合给出的结果表明,与实验相吻合。
摘要 随着三维集成电路(3D-IC)堆叠的增加,由于不对称马鞍形翘曲的增加,机械应力问题具有挑战性。通过在晶圆背面形成数十微米的沟槽或进行激光退火处理来减少不对称翘曲的各种方法已被提出,但它们的产量低或缺乏改进价值。在本文中,我们提出了一种通过在晶圆背面直接涂覆来降低取决于翘曲形状的机械应力的新方法。所提出的方法是通过使用喷墨打印对感光聚酰亚胺(PSPI)进行图案化以调整表面特性和台阶,然后沉积具有高压应力的四乙基硅酸酯(TEOS)薄膜来释放翘曲。利用ABAQUS有限元分析软件,测量了裸晶圆在工艺前后沿x轴和y轴方向的不对称弯曲变化。通过实验和仿真,在300mm晶圆上部分沉积10µm厚的TEOS膜时,x-y方向的倾斜度约为230µm。此外,利用该工艺,可以根据TEOS膜厚度和面积的变化来释放局部弯曲(翘曲)。这些结果为解决堆叠工艺引起的异常翘曲提供了有效的指导,可应用于先进封装中的3D集成。关键词 翘曲、马鞍形翘曲、NAND、3D NAND、背面图案化
背景心血管疾病包括包括动脉粥样硬化的全球崛起,对准确的诊断工具的需求很高,可以在短暂咨询中使用。异常的血流模式是动脉粥样硬化病变位置,进展和斑块破裂的有力预测指标。特定于患者的血流模式通常是从基于3D成像的计算流体动力学获得的。但是,高计算成本使这些方法不切实际。在这里,我们提出了一种新方法,以加快数据还原(POD和T-SNE)和深度学习的组合加快3D速度场的重新构造。方法和结果我们开发了一种半自动管道,该管道产生了从动脉粥样硬化的猪冠状动脉(n = 7)获得的大型数据集(n = 3,500)(n = 3,500),以在经典方式(带有Abaqus)的方式中以数值模拟的血液。然后使用此数据集生成一个大的协方差矩阵,该矩阵被奇异值分解以获得“ eigen”模式,其中选择了五种模式以表示> 90%的信号能量。接下来,使用T-SNE降低了〜110,000个节点的网格。然后使用还原的数据集来训练一组神经网络,该神经网络准确地预测了看不见的动脉几何形状中的血流模式(> 95%)。新方法能够重现冠状动脉中的3D速度场及其衍生物(压力,WSS)的速度比以前快200倍。结论CFD天生就太慢了,无法在临床决策中具有重要意义。利益冲突没有在这里,我们提出了一种新的基于物理的技术,该技术能够在一分钟内在人类冠状动脉中产生3D生物力学图。
混凝土路面已广泛用于机场跑道、滑行道和停机坪的修建。航空业通过开发更长、更宽、更重的飞机以及越来越多的机轮来应对日益增长的航空旅行需求,以支撑地面运行中的飞机。许多研究人员基于有限元法 (FEM) 开发了用于分析接缝混凝土路面的模型。尽管取得了显着的进步,但重要的考虑因素却被忽视了。这些简化可能会影响所开发模型的结果并使其不切实际。本研究进行了敏感性研究,以调查载荷参数对载荷传递效率 (LTE) 指标的影响,其中 LTE 概念是机场设计程序的基础。三维计算模型的开发由一组技术要求指导,所有技术要求均在最终模型中使用有限元代码 ABAQUS (6.13) 得到满足。研究了不同车轮配置下主起落架载荷大小与正负热梯度相结合的影响。介绍了验证过程以增加对模型结果的信心。了解刚性机场路面在这种情况下的响应对于开发新的路面设计程序以及对现有路面实施适当的补救措施非常重要。结果表明,利用动态载荷可以研究路面在不同车轮配置下可能承受的疲劳循环。这样可以检查由于车轮载荷引起的拉伸压缩循环,这可能会降低混凝土的强度,并且比考虑仅在一个方向上施加的静态载荷产生更多的疲劳损伤,即不涉及应力反转。此外,热梯度从正到负的变化显著改变了板的曲率形状。在车轮载荷和正热梯度的组合中发现了应力的临界情况。
混凝土路面已广泛用于机场跑道、滑行道和停机坪的修建。航空业通过开发更长、更宽、更重的飞机来应对日益增长的航空旅行需求,并增加机轮数量以支撑地面运行时的飞机。许多研究人员基于有限元法 (FEM) 开发了用于分析接缝混凝土路面的模型。尽管取得了显著的进步,但重要的考虑因素却被忽视了。这些简化可能会影响所开发模型的结果并使其不切实际。本研究进行了敏感性研究,以调查载荷参数对载荷传递效率 (LTE) 指标的影响,其中 LTE 概念是机场设计程序的基础。三维计算模型的开发由一组技术要求指导,所有技术要求都在使用有限元代码 ABAQUS (6.13) 的最终模型中得到满足。研究了不同车轮配置下主起落架载荷大小与正负热梯度相结合的影响。验证过程旨在增强模型结果的可信度。了解刚性机场道面在这种情况下的响应对于制定新的道面设计程序以及对现有道面实施合适的补救措施非常重要。研究结果表明,利用动态载荷可以研究道面在不同车轮配置下可能承受的疲劳循环。这可以检查由于车轮载荷引起的拉伸-压缩循环,这可能会降低混凝土的强度并产生比考虑仅在一个方向施加的静态载荷(即不涉及应力反转)更多的疲劳损伤。此外,热梯度从正到负的变化显著改变了板的曲率形状。在车轮载荷和正热梯度的结合下发现了应力的临界情况。
简介:实现主要稳定性,它是指放置后立即植入牙齿的机械稳定性,对于成功的骨整合至关重要,尤其是在立即植入物和骨质受损的情况下。然而,尽管牙科植入技术的进步,但对植入物放置过程中骨骼植入物相互作用及其对主要稳定性的影响的知识有限。为了满足这一需求,本研究旨在研究新的锥形植入物设计的主要稳定性(B,Thommen Medical AG,图。1A)使用虚拟稳定性测试。圆柱植入物设计(A,Thommen Medical AG,图1a)用作对照。使用了源自不同钻孔方案的三种不同截骨术类型I,II和III(图1B)。方法:本研究评估了四种植入物 - 骨切开术组合的主要稳定性(AI,AII,BII,BIII,图。1ab)在牛小梁骨样品中使用实验和有限元分析的ABAQUS/显式分析的组合。该低密度骨模型被细分为两个BV/TV(骨体积/总体积)范围:0.16-0.26和0.27-0.38。为了评估一级稳定性,通过将植入物垂直取代其轴直至塌陷,将植入物骨系统加载到压缩模式下。因此,将骨样品从µCT扫描中重建,转换为有限元网格,并与植入物结合到模拟模型。将植入物建模为刚体。该研究量化了四种保留的植入术组合的插入扭矩(IT),刚度(K)和最终推入/拉出力(UF)。最终力(UF)可以用作主要稳定性的客观指标,因为它可以量化植入物骨骼分数的承重能力。使用与盒子图所示的成对比较,使用了指定的BV/TV范围内不同版本的性能,采用了描述性统计。
目的:本研究工作旨在展示在考虑制造参数的情况下对 FDM 虚拟打印的中观结构部件进行拓扑优化的可能性。设计/方法/方法:使用软件 ABAQUS 对 FDM 打印的 3D 部件进行拓扑优化。另一方面,已经实现了使用基于 G 代码文件的脚本的数值方法来创建虚拟模型。然后,根据固体各向同性材料惩罚 (SIMP) 方法对其进行优化,以最小化应变能为目标函数,以 30% 的体积分数为约束。结果:虚拟模型的最终拓扑优化设计与均质部分大致相似。此外,虚拟模型的应变能小于均质部分。然而,虚拟 3D 优化部件体积大于均质部件。研究局限性/含义:在本研究中,由于缩短了模拟时间,我们将研究限制在一层。此外,优化虚拟模型所需的时间过长。在接下来的研究中,我们将优化多层细观结构。 实际意义:我们的研究提供了一种强大的方法来精确优化考虑到制造环境的细观结构。 原创性/价值:在本文中,我们通过一种新颖的方法研究了 FDM 虚拟打印的 3D 部件的拓扑优化潜力。 通过我们的方法,我们能够在考虑制造参数的情况下对 FDM 打印的 3D 部件进行拓扑优化。 关键词:拓扑优化、熔融沉积建模、虚拟 3D 打印部件、SIMP 对本文的引用应按以下方式给出:I. Antar、M. Othmani、Kh. Zarbane、M. El Oumami、Z. Beidouri,FDM 虚拟打印的 3D 部件的拓扑优化,材料与制造工程成就杂志 112/1 (2022) 25-32。 DOI:https://doi.org/10.5604/01.3001.0016.0289