此外,电纺纳米bers具有几个有趣的特征,包括高表面积与体积比。可以通过电源的关键可调节工作参数(包括解决方案,过程和环境因素)的关键可调节工作参数所产生的直径和形状。22 - 24通过仔细调节这些因素,我们可以使用具有理想的物理特征来创建电纺纳米材料,用于高级用途。纳米sca sca o olls具有多种结构特征,已使用许多合成和天然生物聚合物设计。25 – 28 For synthetic polymers, the most commonly used for bone tissue engi- neering, heart gra s, wound dressing, and heart vessel replacement are biodegradable polymers including polylactic acid (PLA), poly-caprolactone (PCL), polyglycolic acid (PGA), polyurethane (PU), copolymer poly(lac-tic- co -glycolide) (PLGA)和聚(l -lactide -co -3-碳酸酯)(PLLA -CL)的共聚物。它们的机械质量(粘弹性和强度)和更快的降解速率使它们比天然聚合物显示出额外的优势。29 - 34
储能设备需要频繁的电池充电或更换。尽管便携式能源存储一直在为移动信息时代提供巨大的成功,但它本身将无法为物联网的新时代提供动力。另外,它是为分布式物联网网络的每个电子传感节点提供功率的有前途的解决方案,并从其工作环境中获得了分布式能量。2然而,包括风,太阳能,振动和机械的分布式可再生能源通常不稳定,并且可能随时间,天气和位置而变化。因此,必须集成能源搭配和能源存储设备。一方面,可以节省能量收割机产生的不稳定电力,并积累以在一定时期内提供稳定的电源;另一方面,如果储能设备被能源收获者完全补偿,则可能不需要充电或更换。自充电电力系统(SCPS)是指与能源收集和能源存储设备集成的电源设备。3
其中,单分子测序(SMS)代表了第三代测序技术的变革性飞跃。与传统的短阅读测序方法不同,SMS可以直接对10 kbp或更长的单个DNA分子进行直接测序,而无需PCR扩展,从而在基因组学研究中具有前所未有的优势。这项技术提供了长长的读取长度,高精度和统一的基因组覆盖范围,使其广泛适用于检测基因组结构变体,高度重复的区域和临床诊断。5 - 7个平台,例如PACI的单分子实时(SMRT)测序(PACBIO)(PACBIO)和牛津纳米孔技术(ONT)的纳米孔测序,已经证明了SMS在基因组组装到临床诊断和个性化药物中的不同应用中的潜力。8,9完成
DNA纳米技术用于构建晚期生物医学应用的设计器3D DNA纳米范围。1在过去的二十年中,全球社区见证了DNA纳米技术的迅速革命。2个DNA在纳米级和通过互补生物分子赋予其生物学活性的物质和生物学活性中有出色的控制。可以通过Watson和Crick Base配对来预测虚拟可编程DNA纳米结构,并且具有无与伦比的优势。3多年来,已经开发出了精确的尺寸和几何形状的1D,2D和3D DNA纳米量的自组装宽品种。4 - 6这些DNA纳米含量是水溶性的生物相容性材料,它们在各种ELDS中都有应用,包括生物传感,生物成像,药物输送和疗法学。7 - 10个DNA纳米范围具有非凡的功能化特性,可以通过这些特性,可以通过生物学部分(例如aptAmers,纳米材料,抗体和肽)进行定位。此外,DNA纳米量有可能在表面和内部空隙中结合并封装纳米go。11 - 14
由未基因的活性成分,BAO和同事引起的不受欢迎的免疫反应设计了完全可生物降解的半导体聚合物,用于瞬态电子产品,通过将可逆的酸氨基氨基键键合成二甲苯吡咯洛洛 - 吡咯 - 基于吡咯 - 基于基于pymine的聚合物的抗二吡罗洛 - 吡咯的聚合物,在该聚合物中,在该蛋白水解中。14,15他们进一步研究了侧链对不同溶剂的降解寿命的影响。16然而,沿聚合物主链的水解裂解化学代表了在共轭长度的主要挑战中,即储能容量。更重要的是,这些共轭聚合物的低电导率显着限制了电池中的实际应用,在这些电池中,非常需要快速的再拨动稳定性和高循环稳定性。迫切需要一种具有完整生物降解和高循环稳定性的合理定制的可生物降解的导电聚合物,以实现可生物降解的可充电电池。在这里,我们通过采用生物吸附化学提出了一种生物相容性的,完全侵蚀的PEDOT衍生化学(图1)通过化学和电化学途径。用磺酸盐和羧基的PEDOT共价束缚,赋予聚合物具有水的溶解度和湿加工能力。17为了控制生物侵蚀速率,将乙醚间隔物与酸基团相关,以降低水溶性。19电聚合lm,消除了对导电添加剂的需求,与Zn阳极相结合时,可以提供高容量,出色的速率和循环性能。18与聚合物主链的水解切解连接相比,可电离和/或可水解的羧酸吊坠的侧链工程同时允许储存和调节磁性动力学动力学,而不会损害电子特性。该电池通过一系列代谢和水解反应在体内完全消失,其生物相容性通过活细胞成像和组织学分析证明。这项工作为生物相容性且完全可侵蚀的导电聚合物的分子工程提供了新的途径,以提供船上的能源供应。
我们报告说,尽管3C - SIC高度有缺陷,但在3C-SIC 12,14上使用Ni/Cu BiLayer在大尺度上均能使用均匀的石墨烯,而不是3C - SIC的调用热分解途径。17镍与SIC形成镍硅的催化反应和释放原子碳的催化反应,并结合铜分布在大面积上释放的碳并促进其绘画的催化反应,尽管伴有高度有缺陷的性质性质,但仍可以连续地石墨烯覆盖。12尤其是,我们将这种改进归因于该系统在1100°C下的液相外观生长18 - 20条规范,与通过3C - SIC的3C热分解相比,碳原子具有更长的二次分解长度。12
自从发现石墨烯以来,二维(2D)纳米材料一直是由于其独特的物理和化学性能,例如大型C表面积,出色的光学透明度以及出色的电导率和热导电性,因此无法研究兴趣。1,2在这些材料中,由共价键与薄板状形态相关的不同组成组成的材料特别引起了人们的关注。3 - 5然而,实现所需的材料特性o te依赖于非共价P堆叠相互作用,这些相互作用在材料构造6 - 9和相干能量传输中起着至关重要的作用。10 - 12,例如,通过P - P堆叠相互作用,PSystems堆叠成一维(1D)柱状P堆栈,这有助于导向能量运输,并为有机电子和光子材料的开发铺平了道路。13 - 17为此,迫切需要制定有效的策略
与传统的散装材料相比,使用三维(2D)纳米片有三个独特的优势:(1)裸露的表面的高百分比可以使更多不饱和的金属活性位点增强催化活性; (2)纳米厚度将加速质量传输和电子转移; (3)唯一的开放结构使更多的内部原子暴露为可访问的活动位点。20 - 22因此,超薄MOF纳米片可能是理想的模型系统,不仅可以设计为高性能电催化剂,而且在催化,传感器和超级电容器等方面具有许多有希望的应用。19不幸的是,由于固有的各向同性化学键,仅缩小具有3D拓扑结构的MOF的尺寸并不容易,目前很少有关于准备2D MOF纳米片的报道。24 - 26因此,为了控制MOF材料的2D各向异性生长,合成过程必须打破热力学平衡状态,并且必须在引入动力学的可控性。作为最重要的MOF之一,MOF-74(M¼CO,Ni)具有高密度和开放的不饱和配位位点,自2005年报道。27 MOF-74具有带有六边形通道的3D拓扑结构,直径约为11°A; MOF的每个金属原子都与2,5-二羟基甲状腺酸酸分子(DHTA)的羧基和羟基羟基羟基上的氧原子进行了协调。金属原子的第六个配位位点被吸收的来宾分子占据,该分子很容易删除以暴露不饱和的金属位点。28归因于
化学改变,原子替代,金属掺杂,静水压力,电动ELD和磁性ELS只是用于改变材料物理特征的少数方法。在这些方法中,应用外部水力压力是一种方便且高度有效的方法来改变钙钛矿材料的带隙。25这种修饰阳离子反过来在其光学和电子特性中显着。在最近的进步中,研究人员在增强钙含量卤化物(CSPBX)钙钛矿太阳能电池板方面取得了重大进展,从而导致功率转换效率(PCE)超过20%。26为了解决环境问题,已经探索了各种替代化合物,例如SN 2+,GE 2+,BI 3+和SB 3+,以取代有害的PB 2+。27在这些替代方案中,锡(SN 2+)由于其感知到的环境友好性而成为一种特别迷人的物质。结果,太阳能电池,光电检测器和由基于锡的有机物制成的LED - 无机