根据《规约》第三条 A 款和第八条 C 款的规定,原子能机构有权促进原子能和平利用方面的科学技术信息交流。原子能机构核能系列出版物提供核能、核燃料循环、放射性废物管理和退役等领域的信息,以及与上述所有领域相关的一般问题。原子能机构核能系列的结构包括三个层次:1 — 基本原则和目标;2 — 指南;3 — 技术报告。《核能基本原则》出版物描述了核能和平利用的基本原理和愿景。《核能系列目标》出版物解释了在不同实施阶段各个领域要满足的期望。《核能系列指南》就如何实现与核能和平利用有关的各个主题和领域相关的目标提供了高级指导。核能系列技术报告提供了有关国际原子能机构核能系列所涉及各个领域活动的更多、更详细信息。国际原子能机构核能系列出版物的编码如下:NG — 一般;NP — 核电;NF — 核燃料;NW — 放射性废物管理和退役。此外,国际原子能机构的网站上还提供英文版出版物:
卡内基机载观测站 (CAO) 的建立是为了满足宏观测量的需求,以揭示地球生态系统的结构、功能和有机组成。2011 年,我们完成并启动了 CAO-2 下一代机载分类制图系统 (AToMS),其中包括高保真可见光至短波红外 (VSWIR) 成像光谱仪 (380 – 2510 nm)、双激光波形光检测和测距 (LiDAR) 扫描仪以及高空间分辨率可见光至近红外 (VNIR) 成像光谱仪 (365 – 1052 nm)。在这里,我们描述了如何使用硬件和软件协同对准和处理技术融合来自这些传感器的多个数据流。通过这些数据流,我们定量地证明了精确的数据融合极大地提高了从遥感中获得的生态信息的维度。我们比较了两个截然不同场景的数据维度——斯坦福大学的建筑环境和亚马逊低地热带森林。主成分分析显示,斯坦福案例中有 336 个维度(自由度),亚马逊案例中有 218 个维度。亚马逊案例呈现的遥感数据维度可能是有史以来森林生态系统的最高水平。模拟数据流错位使有效信息内容减少了 48%,凸显了在进行多传感器
在化石燃料市场价格上涨的时代,为了满足气候变化日益严重的环境和经济问题,可再生能源必须在全球能源供应中发挥重要作用。本文重点介绍一种利用机载激光雷达数据全自动评估屋顶平面太阳能潜力的新方法,并使用完整的 3D 信息进行屋顶平面检测和太阳能潜力分析。基于图像的候选区域检测算法减少了点云的数据量,并识别出包含建筑物的潜在区域,完整性较高(97%)。从建筑物候选区域中提取三维屋顶平面,并计算其方位和坡度。在 3D 点云内计算每个屋顶平面的地平线,从而以适当的方式尊重附近物体(如植被、屋顶、烟囱、天窗等)的阴影效果。与墙壁或建筑物等其他物体相比,植被具有透明特性。因此,下一步是在剩余的非屋顶点内检测植被,并通过计算每个树段平均的局部透明度测量值来引入透明阴影值。对规则分布的屋顶点进行以下太阳能潜力分析,结果包括:(i) 每个屋顶平面的直接辐射和散射辐射的年总和,以及 (ii) 有关一个屋顶内辐射分布的详细信息。通过计算晴空指数,使用来自附近气象地面站的数据考虑云量效应。
摘要。压力脊影响海冰覆盖的质量、能量和动量预算,并对穿越冰封水域的运输造成障碍。量化脊特征对于了解海冰总质量和改善高分辨率模型中海冰动力学的表示非常重要。在北极年度冰桥行动 (OIB) 航空调查期间收集的多传感器测量数据为评估冬末的海冰提供了新的机会。我们提出了一种从高分辨率 OIB 数字测绘系统 (DMS) 可见光图像中得出脊帆高度的新方法。我们通过绘制北极西部和中部 12 个压力脊沿线的完整帆高分布来评估该方法的有效性。通过与同时发生的机载地形测绘仪 (ATM) 高程异常进行比较,可以证明该方法并评估 DMS 得出的帆高。帆高和高程异常的相关系数为 0.81 或以上。平均而言,帆高平均值和最大值与 ATM 海拔高度的吻合度分别在 0.11 米和 0.49 米以内。在绘制的山脊中,帆高平均值范围为 0.99 至 2.16 米,而最大帆高范围为 2.1 至 4.8 米。DMS 沿山脊的采样率也高于同步的 ATM 数据。
阿格拉 Shri S.M.Jain,ADRDE Ahmednagar Col Atul Apte,Shri RA Shaikh,VRDE Ambernath Dr Susan Titus,NMRL Bengaluru Shri Satpal Singh Tomar,ADE Smt M.R.Bhuvaneswari,CABS Smt Faheema A.G.J.,CAIR Shri R. Kamalakannan,CEMILAC Ms Josephine Nirmala,DARE Shri Kiran G.,GTRE Dr Sushant Chhatre,MTRDC Chandigarh Shri Neeraj Srivastava,TBRL Dr H.S.Gusain,SASE 钦奈 Smt S Jayasudha,CVRDE 德拉敦 Shri Abhai Mishra,DEAL Dr S.K.Mishra,IRDE Delhi Amit Pasi 先生,CFEES Dipti Prasad 博士,DIPAS Nidhi Maheshwari 博士,DIPR Ram Prakash 先生,DTRL Navin Soni 先生,INMAS Anurag Pathak 先生,ISSA D.P. 博士Ghai,LASTEC Ms Noopur Shrotriya,SAG Dr Rachna Thakur,SSPL Gwalior Dr Manorama Vimal,DRDE Haldwani Dr Atul Grover,DIBER Dr Ranjit Singh Hyderabad Dr J.K. Rai,ANURAG Shri A.R.C.Murthy,DLRL Dr Manoj Kumar Jain,DMRL Dr K Nageswara Rao,DRDL Jodhpur Shri Ravindra Kumar,DL Kanpur Shri A.K.Singh,DMSRDE Kochi Smt Letha M.M.,NPOL Leh Dr Tsering Stobden,DIHAR Pune Shri A.K.Pandey,ARDE 博士 J.A.Kanetkar Himanshu Shekhar 博士,HEMRL Anoop Anand 博士,R&DE(E) Tezpur Sibnarayan Datta 博士 Sonika Sharma 博士,DRL
机载互联网 CIE:应用丰富 Ralph Yost William J Hughes 美国联邦航空局技术中心 新泽西州大西洋城机场 08405 (609) 485-5637 Ralph.Yost@faa.gov 机载互联网将为在飞机上使用新应用提供巨大的机会。实施机载互联网后,驾驶舱功能将得到极大改善,而协作信息环境 (CIE) 是将驾驶舱从相对静态的信息用户转变为信息网络上的动态节点的有利技术。通过使用 TCP/IP 和 XML Web 服务,机载互联网 CIE 将为机上人员使用大量新应用奠定基础。机载互联网 CIE 应用可能包括系统范围信息管理 (SWIM)、管制员飞行员数据链路 (CPLDC)、定期下载飞机的“黑匣子”数据、优先 TCP/IP 消息传送、IP 语音(然后可用作大洋或墨西哥湾空域的语音)、更好和更强大的天气信息、机场/设施目录、FAA NOTAM(包括“特殊用途空域(包括 TFR)”)、远程医疗、特殊国土安全功能以及电子飞行包应用(如冲突检测和避免)。驾驶舱应用可以通过机组人员的声音来指挥和控制,而不是使用笨拙且有时难以使用的鼠标、键盘和指点设备
个人简介 Christopher Hegarty 是 MITRE 公司的技术研究员,自 1992 年以来主要从事 GNSS 的航空应用工作。他获得了 WPI 的电气工程学士和硕士学位以及 GWU 的电气工程博士学位。他目前是 RTCA, Inc. 的项目管理委员会主席,也是 RTCA 特别委员会 159 (GNSS) 的联合主席。他是 ION 和 IEEE 的研究员,也是教科书《理解 GPS/GNSS:原理和应用》第 3 版的联合编辑/合著者。 Ali Odeh 是 MITRE 公司的高级工程师。他获得了北卡罗来纳州立大学的电气工程学士和硕士学位。他在设计、开发和分析 GPS 接收器、GPS 抗干扰系统和无线通信系统的数字信号处理算法方面拥有超过 6 年的经验。 Karl Shallberg 是 Zeta Associates Inc. 的高级助理,自 2013 年以来一直担任 Zeta FAA GNSS 项目支持工作的项目负责人以及 Zeta Volpe PNT 频谱工程工作的项目负责人。自 1996 年以来,他一直在 GPS 接收器性能、干扰评估和系统工程问题等领域为 FAA GNSS 计划提供支持。他之前曾担任 Grass Roots Enterprises Inc. 总裁,并在美国政府开始了他的职业生涯。他获得了诺维奇大学物理学学士学位。Kyle Wesson 在 Zeta Associates 工作,并为 FAA 的 WAAS 项目办公室提供支持。他获得了
早期的机载数字计算机使用了微型真空管、分立半导体元件和混合电路。当集成电路得到开发和改进后,人们的偏好迅速转向集成电路。整个 20 世纪 60 年代中期,随着集成电路产量的增加,双极硅集成电路的使用几乎变得普遍。这与内存改进一起,带来了计算速度的普遍提高以及重量和功耗的降低。随着硬件代价的降低和可靠性的提高,并行算术运算在这一时期设计的计算机中得到普遍使用。字长变得更加标准化。浮点数表示开始出现。基本指令集中的指令数量开始更快地增长。同时,机载计算机的成本也变得更低。
Corinna Kloss 1,* , Vicheith Tan 1 , J. Brian Leen 2 , Garrett L. Madsen 2 , Aaron Gardner 2 , 徐杜 2 , Thomas Kulessa 3 , Johannes Schillings 3 , Herbert Schneider 3 , Stefanie Schrade 1 , 晨曦邱 1 , 马克·冯·霍布 1
为了避免与这些术语和其他术语混淆,NASA 选择将其传感器称为 TAMDAR。拟议的机载气象报告系统将利用飞行中的仪表飞机作为气象观测平台,向该信息的用户报告现场情况。这些用户包括天气预报员、天气简报员、空中交通管制员和其他飞行员。信息将作为数字数据流传输或中继到地面进行收集和传播。该概念要求在对流层飞行的飞机配备传感器套件或包。如附录 A 中的图 1 所示,TAMDAR 传感器将测量气象数据并计算其他值。此信息将下行链接到地面收发器网络或卫星网络。中央处理站点将收集数据、进行处理,并将其发送到 NCEP、航空气象中心、飞行服务站、航空公司气象中心和其他站点。在 NCEP,建模者将原始数据纳入 RUC 预测模型,以增强模型输出。其他用户将使用原始数据并进行进一步处理,以创建新的气象信息产品。中央处理站点将收集所有气象产品,并将相关部分发送到地面收发器网络。作为 AWIN 系统概念的一部分,气象信息将上传回每架飞机。两家 FAA 签约供应商 ARNAV 和 Honeywell 目前正在为飞行信息服务 (FIS) 实施这项服务。备用路线将使危险类型信息或 HAZMET 绕过中央处理站点并直接中继回其他飞机。这一概念需要各企业和政府实体之间建立重要的通信基础设施。