David R. Jovel是南部地区教育委员会和国家研究生委员会的工程和科学学位(GEM)研究生学位的国家联盟(GEM)研究生,致力于博士学位。在佐治亚理工学院航空航天工程学院的高功率电气推进实验室。他赢得了学士学位2012年在德克萨斯大学奥斯汀大学的航空航天工程中,并继续在NASA Goddard太空飞行中心,轨道ATK,Intelsat和Aersospace Corporation等组织中担任各种技术角色。他的主要研究重点是真空室对霍尔效应推进器性能和稳定性的电气设施影响的表征。其他研究兴趣包括射频离子推进器,高功率电推进设备的热管理和非平衡等离子体。
委员会感谢 MITRE 公司、弗吉尼亚联邦大学和弗吉尼亚大学的支持,这些公司允许委员会在其设施内举办会议。委员会还要感谢以下组织的参与者分享他们的观点:阿可麦克县、先进飞机公司、Aerojet Rocketdyne、Blue Origin、汉普顿路军事和联邦设施联盟、毕马威、中大西洋航空伙伴关系、国家航空航天研究所、技术和运输部长办公室、OmniEarth、Orbital ATK、半岛技术孵化器、劳斯莱斯、弗吉尼亚商业太空飞行管理局、弗吉尼亚州交通部、弗吉尼亚州经济发展伙伴关系、弗吉尼亚理工大学和瓦洛普斯岛地区联盟(请参阅附录 B 中的演讲和访谈列表)。
▪ 由于交付延迟,全球机队的平均机龄已上升至创纪录的 14.8 年,与 1990 年至 2024 年期间的平均机龄 13.6 年相比有显著增长。机队老化意味着维护成本更高,燃料消耗也更高。因此,现有的供应链问题至少是造成燃油效率提高放缓的部分原因——2024 年燃油效率(以每可用吨公里升数计算,即“ATK”)基本保持不变(同比仅下降 0.1%),这与长期(1990-2019 年)燃油效率年均提高 1.5-2.0% 的趋势背道而驰,令人遗憾。如果 2024 年的效率提高率继续保持在 1.5%,那么在其他条件相同的情况下,航空业将减少燃烧 14 亿加仑的航空燃油,二氧化碳排放量将减少 1360 万吨。
图 1-1. IE 综合评审分类法 ............................................................................................................................................. - 5 - 图 3-1. 飞机排放、影响和损害之间的关系 ............................................................................................................. - 20 - 图 3-2. 机场对 2008/9 年期间平均 NO x 浓度的贡献 ............................................................................................. - 22 - 图 3-3. 2013 年大伦敦地区年平均 NO 2 浓度 ............................................................................................. - 24 - 图 3-4. 靠近出口喷嘴处测得的颗粒大小分布 ............................................................................................. - 24 - 图 3-5. 从工业化前时期到 2009 年全球航空的 IPCC RF 成分 ............................................................. - 30 - 图 3-6:全球总体水平的航空环境影响比较 ............................................................................................. - 34 - 图 4-1.单通道和双通道飞机在估计 ML/D 方面的改进 ............................................................................................. - 36 - 图 4-2. 从燃料中的能量到有用推进功率的两步转换过程 ............................................................................. - 39 - 图 5-1. 燃烧策略:左侧为浓燃烧 (RQL),右侧为稀薄燃烧 (LDI) ............................................................. - 47 - 图 5-2. 当前稀薄燃烧的比较(左
Brad Bolstad 是 L3Harris Technologies 太空优势和地理空间 (SSG) 部门的总裁。在太空和机载系统部门,有广泛的解决方案组合,包括情报、监视、小型卫星、电子战、航空电子设备(包括运载和释放系统)、无线解决方案和 C4I 系统。Bolstad 于 2019 年担任总裁一职。在这个职位上,他负责控制价值 7 亿美元的部门的盈亏,并负责资源部署——发展和执行专注于监视、情报和无线解决方案的产品组合,支持国防部、国家侦察办公室、国家地理空间管理局和其他任务合作伙伴。他向 L3Harris 太空和机载系统总裁汇报。在加入 L3Harris 之前,他曾担任雷神公司太空系统业务发展和战略总监。Brad 还曾担任雷神公司太空系统导弹和太空防御总监,负责导弹预警、导弹防御、太空保护、太空领域任务保障和下一代军事系统。 Bolstad 还曾担任 Orbital ATK 和 Northrop Grumman 的关键职位,
攻击开始时间:2022 年 10 月 威胁行为者:BlueBravo(APT 29、Cozy Bear、The Dukes、Group 100、Yttrium、Iron Hemlock、Minidionis、CloudLook、ATK 7、ITG11、Grizzly Steppe、UNC2452、Dark Halo、SolarStorm、StellarParticle、SilverFish、Nobelium、Iron Ritual、Cloaked Ursa) 攻击国家:澳大利亚、阿塞拜疆、白俄罗斯、比利时、巴西、保加利亚、加拿大、车臣、智利、中国、塞浦路斯、捷克、丹麦、法国、格鲁吉亚、德国、匈牙利、印度、爱尔兰、以色列、意大利、日本、哈萨克斯坦、吉尔吉斯斯坦、拉脱维亚、黎巴嫩、立陶宛、卢森堡、墨西哥、黑山、荷兰、新西兰、波兰、葡萄牙、罗马尼亚、俄罗斯、新加坡、斯洛伐克、斯洛文尼亚、西班牙、韩国、瑞士、泰国、土耳其、乌干达、阿联酋、英国、乌克兰、美国、乌兹别克斯坦、北约攻击领域:航空航天、国防、教育、能源、金融、政府、医疗保健、执法、媒体、非政府组织、制药、电信、交通、智库和图像攻击:GraphicalNeutrino 和 BEATDROP 是与俄罗斯有关的威胁组织 BlueBravo 在有针对性的网络攻击中使用的恶意软件,使用合法的西方服务进行命令和控制通信以逃避检测。
bbls桶gwh gigawatt-kt kt kt kt ktoe ktoe千吨油量kWh千瓦时千瓦时千瓦时mmbtu mmbtu mmbtu百万英国英国热热单元mw megawatt tbtu tbtu tbtu tbtu trillion tbtu themeral tco2 tco2吨液化石油气液化石油气体RFO残余燃油区。SPV Distributed Solar PV FEC Final Energy Consumption TES Total Energy Supply TFC Total final consumption W2E Waste-to-Energy ECG Electricity Company of Ghana EPC Enclave Power Company Ltd GNGC Ghana National Gas Company GNPC National Petroleum Corporation GRIDCo Ghana Grid Company GSS Ghana Statistical Service NEDCo Northern Electricity Distribution Company NPA National Petroleum Authority PURC Public Utilities监管委员会Valco Volta铝公司VRA VORTA河管理局WAGP西非天然气管道WAPCO WAPCO西非天然气管道公司
无人商业亚轨道飞行目前用于天气预报、观测和微重力实验。通常,无人研究任务用于在使用火箭进行载人飞行之前测试系统(Foust,2017 年)。亚轨道航天飞行是指航天器达到海平面以上至少 100 公里(62 英里)(卡门线),然后返回地球而不完成绕地球的完整轨道(Santoro 等人,2014 年)。亚轨道航天器的设计速度不足以进入地球轨道。另一方面,轨道航天器能够到达并维持绕地球的轨道。近年来,一些组织(例如维珍银河、蓝色起源和 SpaceX)已经设想或即将能够为商业太空旅游提供定期太空运输。然而,用于旅游和轨道空间站补给的商业太空飞行才刚刚开始:2001 年至 2009 年间,只有七名太空游客访问了国际空间站 (ISS)(太空探险,2013 年),从 2008 年开始,NASA 授予 SpaceX 和 Orbital ATK 两份合同,用于向国际空间站补给货物(NASA,2017 年)。2021 年,维珍银河、蓝色起源和 SpaceX 完成了首次载客商业太空飞行,但仍是非定期的。随着可靠太空飞行器的发展,应该考虑通过亚轨道飞行运输货物的可能性。
(HSST) 计划的负责人塔克表示,RSH 是实现 HAPCAT 项目目标的关键要素。“我们的目标是开发和演示第一个洁净空气、真焓高超声速测试设施,该设施能够将模拟飞行条件从 4.5 马赫变为 7.5 马赫,以进行航空推进、气动和气动光学测试,”他表示。HAPCAT 的测试正在纽约州朗康科玛的 Alliant Techsystems (ATK) 通用应用科学实验室设施进行。最终,在 HAPCAT 中开发和验证的技术将被纳入 AEDC 的空气动力学和推进测试单元。塔克解释说,目前的国家高超声速航空推进地面测试设施使用流内燃烧或污染来实现进气的高温,然后通过固定几何形状的单马赫数喷嘴输送到发动机。 “污浊空气不能代表超燃冲压发动机在飞行过程中遇到的空气,会对准确量化吸气式超燃冲压发动机推进系统的关键性能和操作性指标产生不利影响,”他说。“这会增加采购项目的飞行测试风险,并迫使开发人员增加额外的设计裕度,而这可能会降低系统性能。”
[3],ATK [4],Quantum Espresso [5,6],EPW [7],Per-Turbo [8])并稳步增加硬件资源。对于单位细胞中有大量原子的系统,例如共价有机框架(COFS)[9],使用AB ITIBL方法仍然具有挑战性。尤其是在需要对许多此类材料进行高通量筛选的情况下,需要替代方法。密度的功能紧密结合(DFTB)[10]是一种方法,因为它有效地降低了密度功能理论(DFT)的复杂性,将Kohn – Sham方程式施加到紧密结合形式中。该方法现在富含扩展[11],并已成功地用于研究各种材料的电子和结构特性。一个非详尽的列表包括有机聚合物,COF [12]和生物分子系统[13],过渡金属氧化物(Tio 2 [14],Zno [15]),MOS 2膜和纳米结构[16],Gra-Phene缺陷[17]和Allotropes。它专门用于研究几种无机材料(Si,SiC,Ag,au,Fe,Mg,Mg)的纳米颗粒和纳米棒的结构和电子,对于DFT计算,其大小不可行。Green的DFTB功能扩展已用于研究弹道性纳米结构中的电子和声子传输[18]。在这项贡献中,我们关注放松时间近似中的Boltzmann转移理论。为此,我们首先从一般的非正交紧密结合的汉顿(Ham-iLtonian)开始得出电子 - 音波耦合的表达。因此,我们的结果适用于DFTB和其他