•符合或超过适用的环境立法,环境标准和最佳实践。•每天,每日,每季度和每年分析的每日及相关排放量,以便将能源消耗及相关排放量减少2%或更多,以相对于能源消耗和本财政年度年度计划中规定的产生排放。•重视并保留我们财产的自然和文化遗产,从而使我们的客人能够享受真实的本地体验。•在我们的财产中,尤其是水和能源,促进有效利用材料和资源。•努力工作,通过重复,回收和保护自然资源,尤其是通过能源和节水来最大程度地减少我们的废物流。•设定声音环境和社会目标和目标,整合审查过程并定期发布进度报告。•不断确定改善环境管理系统的机会。•促进认识并教育员工有关环境问题和可持续工作实践的教育。•让我们的客人,团队成员,供应商,承包商和当地社区参与我们的计划,以保护环境并在设置环境计划和程序时考虑他们的意见/反馈。•进行环境可取的购买。•参与改善地方和国家一级环境保护的努力。
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
支持结构 WMO 会员 WMO 秘书处 气溶胶科学顾问组 (SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目 (GURME) 质量保证科学活动中心 (QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心 (WDC) 意大利伊斯普拉的气溶胶 (WDCA) (EU) 日本的温室气体和其他痕量气体 (WDCGG) 美国的降水化学 (WDCPC) 俄罗斯的太阳辐射 (WRDC) 挪威的表面臭氧 (WDCSO) 加拿大的紫外线辐射和臭氧 (WOUDC) WMO GAW 臭氧测绘中心 (WO 3 DC)在希腊
来自太阳和星际空间的原始宇宙辐射以不同的量进入地球大气层。在地球大气层之外,宇宙辐射受到太阳活动和地球磁场的调节。一旦辐射进入地球大气层,它就会以相同的方式与地球大气层相互作用,无论其来源是太阳还是银河系。自 1980 年代末以来,民航研究所(即民航研究所 - 现民航医学研究所或 CAMI 的前身)一直在开发用于计算宇宙辐射在大气中电离辐射剂量的软件。对于 CARI-6 及更早版本,用于计算大气中时间和位置相关剂量率的方法包括从预先计算的银河宇宙辐射剂量率数据库中进行插值,这些剂量率涵盖广泛的输入条件(纬度、经度、太阳活动和海拔)。这些早期数据库不适合计算太阳质子事件剂量率。它们的最大高度也被限制在 87,000 英尺,而在 60,000 英尺以上的高度,有效剂量会越来越不准确。本报告介绍了 CARI-7 和 -7A 中使用的计算大气中宇宙辐射粒子通量和剂量的方法。该方法包括从预先计算的粒子进入地球大气层的蒙特卡罗模拟数据库中构建代表性的宇宙辐射流贡献。新方法虽然比旧方法稍慢,但它提高了高海拔的准确性,并且很容易应用于银河宇宙辐射和太阳粒子事件。虽然 CARI-7 处理数据的方式与蒙特卡罗模拟最一致,但 CARI-7A 为用户提供了处理这些数据的更多选项。
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
经过超过十年的连续大气观测,需要讨论火星大气数据同化(MADA)的当前和未来方向。组织了一系列的研讨会,以将从事建模技术的研究人员与提供数据的研究人员联系起来,这也受益于在地球和金星数据同化方面具有特定经验的研究的贡献。第一个研讨会(MADA 2018)于2018年8月29日至31日在法国城市Le Bourget-du-lac举行。为期三天,参与者一起讨论了他们到目前为止所学到的课程,仍然存在哪些挑战以及在火星上吸收大气数据的机会。MADA 2024,该研讨会的后续活动在2024年7月26日在加利福尼亚州帕萨迪纳举行的第10届火星会议之后举行:https://adapt.psu.edu.edu/2024mada/index.php?loc=agenda。