[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
1极端条件的联合实验室重要的特性,制造过程测试技术的关键实验室,教育部,国家主要的能源材料的国家主要实验室,西南科学技术大学,Mianyang 621010,中国2个物理与电子学院,中国北部大学,中国北部大学,中国北部大学,jandsha 410083,j ghandsha 410083,j Chandsha 41008 3 434023,中国; shubocheng@yangtzeu.edu.cn 4 416000 Jishou University,Jishou 416000,中国5物理学系,金宗大学,金宗大学,Jinzhong 030619,中国; phys.zhangjg@gmail.com 6物理学学院,吉安根技术大学,杭州310023,中国; chaojuntang@126.com 7 Guangxi精密导航技术与应用主要实验室,Guilin电子技术大学,Guilin 541004,中国8号物理与电子信息工程学院,荷西工程大学,小号432000,中国432000,中国); yougenyi@csu.edu.cn(y.y。);电话: +86-0816-2480830(Z.Y。)†这些作者为这项工作做出了同样的贡献。
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
使用人类小肠的细胞模型,再加上基于实验室的胃肠道设备,该设备模拟消化系统,研究人员发现,纳米大小的塑料颗粒与仅砷相比,纳米大小的塑料颗粒增加了近六倍。对Boscalid(一种常用农药)的效果也相同。
相比之下,IRRAS在氧化物和二元组中的应用通常不那么发达了。虽然广泛可用的氧化物粉末吸附剂的实验性IR数据,但这些材料的宏观单晶的10,11 IRRAS数据受到限制。10–13此限制源于电介质的特定光学特性,并阻碍了直到最近氧化物上IRRAS数据的实验记录。金属和半导体之间的关键区别是通过金属电子对电场进行筛选,影响总红外反射率,并引起所谓的表面选择规则,管理金属表面上的IRRAS。2,14该规则规定,对于金属,通常仅具有过渡偶极矩的成分的振动
大藻的生长取决于生物学上可用的氮,例如铵和硝酸盐,使氮是大藻类最常见的生长限制因素。然而,表面微生物在促进氮转化和改善氮利用中的作用尚不清楚。在这项研究中,从U. fasciata的表面分离出228种细菌菌株,高吞吐量测序揭示了不同氮浓度下表面细菌群落组成的显着转移。关键细菌家族(如杜鹃花科和黄酮科)被确定为氮循环必不可少的。网络分析表明,杜鹃花科和黄酮科是微生物相互作用的中心节点。一个合成微生物群落(Syncom2),包括四种菌株,显着增加了U. fasciata的生物量,氮和磷的获取,其可溶性糖,蛋白质和叶绿素A水平升高了23.9-49.2%。定量逆转录聚合酶链反应(RT-QPCR)分析表明,与未经处理的对照植物相比,Syncom2增强了与光合作用相关的关键基因的表达(RBCL,1.04倍),脂质生物合成(ACCD,11.21-折叠)和生长群量path(ACCD,11.21-倍)(wer)(螺旋)。这些发现表明,Syncom2通过改善营养的获取和激活与生长相关的基因来促进U. fasciata的生长。
半导体中疾病的存在可以极大地改变其物理特性。然而,忠实地考虑它的模型仍然稀缺且计算不足。我们提出了一个数学和计算模型,能够模拟几十纳米侧长的半导体合金的光电子响应,同时涉及由纳米级的组成障碍引起的量子定位效应。该模型基于对位置景观理论使电子和孔本征孔的结构的Wigner-Weyl分析。在针对1D和2D中基于本征态的计算验证后,我们的模型应用于不同组合物的3D Ingan合金中光吸收的计算。我们获得了平均带隙以下的吸收尾部的详细结构和所有模拟组合物的urbach能量。此外,Wigner-Weyl形式主义使我们能够在所有频率下定义并计算有效局部吸收能力的3D地图。最后,所提出的方法为将此方法推广到所有能量交换过程,例如逼真的设备中的辐射和非辐射重组。
在发布政策中指定了此版本的手稿的重复使用条款和条件。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。有关所有使用条款和更多信息,请参见发布者的网站。
研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。