摘要简介:足够的高血糖控制仍然是临床使用的治疗剂的巨大挑战。新的,更有效的抗糖尿病药物是药物发现项目的首位。方法:本文介绍了2、3二氯二烷酮(C1)和2、6-二氯 - 皇家酮(C2)的体外抗糖尿病潜力,α-氨基糖苷酶和α-淀粉酶,然后在硅分析中进行。结果:两种化合物C-1和C-2都在各种测试浓度下对α-葡萄糖苷酶进行显着抑制,IC 50中的35.266μm和38。分别为379μm。 同样,化合物C-1和C-2分别以42.449μm和46.708μm的IC 50值引起了显着的抗α-淀粉酶作用。 关于α-葡萄糖苷酶和α-淀粉酶结合位点的分子对接投资被实施,以更好地理解C1和C2分子与活性位点之间发生结合力学的模式,这说明了与参考抑制剂和Acarbose和Acarbose的评估相结合的效率。 活性化合物C1和C2与活性位点残基之间的相互作用主要是极性键,氢键键合,π-π和π-H相互作用,这有助于与酶骨架的强烈比对。 同样,有效结合通常由强稳定且稳定的氢键模式表示,这是由于MM-PBSA值的最小波动所表明的。 结论:简而言之,这项研究将有助于为这些化合物提供改善的抗糖尿病性和毒性降低。分别为379μm。同样,化合物C-1和C-2分别以42.449μm和46.708μm的IC 50值引起了显着的抗α-淀粉酶作用。关于α-葡萄糖苷酶和α-淀粉酶结合位点的分子对接投资被实施,以更好地理解C1和C2分子与活性位点之间发生结合力学的模式,这说明了与参考抑制剂和Acarbose和Acarbose的评估相结合的效率。活性化合物C1和C2与活性位点残基之间的相互作用主要是极性键,氢键键合,π-π和π-H相互作用,这有助于与酶骨架的强烈比对。同样,有效结合通常由强稳定且稳定的氢键模式表示,这是由于MM-PBSA值的最小波动所表明的。结论:简而言之,这项研究将有助于为这些化合物提供改善的抗糖尿病性和毒性降低。关键字:2、3和2、6-二氯丁酮,α-葡萄糖苷酶/α-淀粉酶抑制,分子对接,分子模拟
摘要 α-葡萄糖苷酶抑制剂是一种潜在的抗糖尿病药物,可用于控制糖尿病患者的血糖。本研究旨在通过体外测试筛选高良姜各部位对 α-葡萄糖苷酶的抑制活性。作为一项初步研究,评估了高良姜根茎、茎、叶和果实的 70% 乙醇提取物对 α-葡萄糖苷酶的抑制作用,以及总酚含量和基于卤虫致死率测试 (BSLT) 的毒性。植物提取物的每个部分都显示出比阳性对照阿卡波糖更高的 IC 50 值(果实提取物的 IC 50 = 14.39 μg/ml,叶提取物的 IC 50 6.13 μg/ml,茎提取物的 IC 50 20.57 μg/ml,根茎提取物的 IC 50 126.67 μg/ml 和阿卡波糖的 IC 50 172.02 μg/ml)。有趣的是,每种提取物还显示出不同的总酚含量,其顺序与它们在抑制 α-葡萄糖苷酶活性方面的 IC 50 相同。此外,BSLT 显示只有叶子和茎属于无毒组。根据测定,这表明这种植物具有作为抗糖尿病药物进行研究的潜力。
进一步的抗高血糖药物选择: • 通常是 SGLT2 抑制剂、DPP-4 抑制剂、GLP-1 受体激动剂、磺酰脲类药物或胰岛素 • 较少见的只有阿卡波糖或吡格列酮。 如果口服药物未能达到血糖目标且患者的 HbA1c 仍高于 64 mmol/mol (8%),请不要延迟开始注射治疗(GLP-1 受体激动剂或胰岛素)。 有关药物选择的详细考虑因素(例如降低 HbA1c 的功效、低血糖风险、对体重的影响、心血管和肾脏益处),请参阅治疗指南。
天然抗糖尿病药物已被探索作为广泛使用药物的替代品,特别是因为它们的副作用发生率较低。蒲公英传统上被用于治疗糖尿病患者。本报告描述了使用生物测定引导的分离方法从蒲公英 70% 乙醇提取物中分离黄酮苷杨梅苷。使用径向色谱法分离选定的级分。基于核磁共振光谱数据对分离化合物进行结构解析。杨梅苷的体外测试表明,通过抑制 α-葡萄糖苷酶的机制,杨梅苷具有很高的抗糖尿病活性,IC 50 值为 46.03 ± 0.25 μg/mL,与阿卡波糖相当,后者的 IC 50 值为 45.84 ± 0.27 μg/mL。分子对接结果显示,杨梅苷的 ΔG 为 -3.89 kcal/mol,而阿卡波糖的 ΔG 为 -4.41 kcal/mol。杨梅苷通过与 His626、Asp469、Met470、Asp357、Arg552、Asp630 和 Asp568 形成氢键,与 Ala234、Trp329、Trp432 和 Ala628 形成四种疏水相互作用,与 Asp568 形成电子键,与 α-葡萄糖苷酶相互作用。这种结合特性表明杨梅苷和阿卡波糖之间存在相似性。本研究报告了从 S. cumini var. album 中分离的杨梅苷的发现,显示出开发为通过抑制酶 α-葡萄糖苷酶起作用的糖尿病药物的良好结果。
目的:研究甲醇(MeOH)提取物的细胞毒性和α-淀粉酶抑制(AAI)及其分离的代谢产物。方法:使用SIO 2和RP-18柱色谱法(CC)完成了Minuta天线的MeOH提取物的植物化学研究。除了与文献数据进行比较外,还确定了分离的代谢产物的结构并根据各种数据进行验证。使用硫若丹明B(SRB)测定法的HEPG2,MCF-7和HCT116细胞系评估了代谢物的细胞毒性潜力。还测定了代谢产物的体外AAI电位,并使用分子对接研究的结果证实了发现。结果:分离并表征了一种噻吩(化合物1),一个香豆素(化合物2)和三种酚类化合物(化合物3-5)。化合物1在HEPG2,MCF-7和HCT116细胞系上表现出明显的细胞毒性作用(IC 50值:2.7 - 7.3μm),相对于阿霉素(IC 50值:0.18-0.60μm),而化合物2对MCF-7(IC 50.7.7.7.7.7.7.7.7,7.7.7)具有中等的细胞毒性作用。此外,与Acarbose相比,化合物4和5产生了有效的AAI效应,分别为12.3和9.2 µm,分别为12.3和9.2 µm,以及91.8和94.7%的抑制作用(94.7%的抑制作用和7.1 µm的IC 50)。有趣的是,体外AAI和计算机结果彼此一致。化合物5和4的阴性对接得分(分别为-13.655和-12.135 kcal/mol),比天然抑制剂,米尔米丁素(-12.155 kcal/mol)和acarbose(-15.105 kcal/mol)。结论:这些结果表明,t。inuta是抗糖尿病和细胞毒性代谢物的宝贵来源。但是,有必要通过额外的体内和体外研究来验证这些结果。关键字:塔吉特人,星形科,类黄酮,α-淀粉酶抑制,细胞毒性势
通常的建议是继续服用通常的糖尿病药物,即使您不像往常一样进食。以下是常见糖尿病治疗的清单,也是有关您是否应该继续服用的更多信息。二甲双胍继续正常服用,除非您严重不适(例如腹泻,呕吐或发烧)可以暂时停止。如果您不舒适,应该停止它。Acarbose继续正常服用,除非您呕吐或腹泻,否则可以暂时停止。斜甲酰胺,Glimipiride,Glipizide,Nateglinide,Repaglinide继续正常服用。如果您无法进食或喝酒,则可能有Hypo的风险(低血糖水平),因此可能需要减少或暂时停止剂量。如果您无法进食,请使用含糖饮料(例如果汁或全糖可乐)来治疗任何含量。
医学院,美国马萨诸塞州,美国马萨诸塞州。Abstract word count : 233 Total Word count : 3855 Figures : 3 Tables : 3 Key words : type 2 diabetes, weight loss, anti-diabetic drugs, body composition, diabesity Running title : Anti-diabetic drugs and weight loss in T2D Chemical compounds: Drug PubChem CID Metformin 4091 Acarbose 41774 Dapagliflozin 9887712 Canagliflozin 24812758 Ertugliflozin 44814423 Empagliflozin 11949646 Exenatide 45588096 liraglutide 16134956 Semaglutide Semaglutide 56843331#sepress for nore viorwologiny:Paolo fiornology and botornogoly and boton tworgon,bost ost worge tworgon,bost ynepon tworgon,bost y phd phd phd phd phd, Ave,02115波士顿,MA电子邮件:paolo.fiorina@childrens.harvard.edu orcid ID:Paolo Fiorina 0000-0002-1093-7724
Inteentecon临床实践既缺乏有效的治疗和强有力的证据,而且危害往往比好处更大(Wooten,2007年)。据报道,法国丁香花在中世纪用于治疗糖尿病(Witters,2001)并导致现代药物二甲双胍,但大多数其他当前抗糖尿病药物在20世纪(硫代氟脲,硫代脲,噻唑烷二酮,Glinides,Glinides,acarbose)。肠降直直染蛋白(胰高血糖素样肽-1 [GLP-1]受体激动剂和二肽基肽酶-4 [DPP-4]抑制剂)在2000年代获得了许可,但它们的发育扎根于前几十年的基本科学。在1920年代初发现胰岛素(Tattersall,2009年)之后,随后是从动物来源衍生出的早期制剂的批量生产,在很久以后通过合成替代品的发展和
摘要:在这项研究中,根据虚拟筛选和文献选择了12种氟苷糖苷,并通过体外酶活性抑制实验选择了槲皮素作为α-葡萄糖苷酶的最佳选择性抑制剂。其α-葡萄糖苷酶的IC 50值为79.88 µm,其IC 50值对α-淀粉酶> 250 µM。因此,它可以用作新的α-葡萄糖苷酶的新选择性抑制剂。进一步探索了Quercimeritrin对两种淀粉消化酶的选择性抑制机制,并证实了槲皮素具有α-葡萄糖苷酶的结合性强度很强,并通过非质量糖苷酶的结合袋占据了α-葡萄糖酶的结合。随后,动物实验表明槲皮素可以在体内有效控制餐后血糖,其抑制作用与acarbose相同,但没有副作用。因此,我们的结果提供了有关如何使用avone aglycones来有效控制消化率以提高餐后血糖水平的洞察力。
•biguanide•二甲双胍葡萄脂•磺酰尿酶•糖糖尿病,微米酶•糖微生物糖糖酶,糖•玻璃脂酰胺酰胺•glipizide•glipizide glipizide•glipizide•tolazamide Orinose•tolazamide tolazamide tolazamide•tolazamide•氯化•氯化二氧化二氧化二氧化固醇氧化二氧化二氧化二氧化固醇氧化二氧化固醇蛋白酶 - 抗氧化二氧化二氧化氢前糖•米格列醇糖•噻唑烷二酮•吡格列酮Actos•罗马列酮阿avandia•大litinides•repaglinide prandin•nateginide starlix•二肽基肽酶-4(4(dpp -4 linagliptin Tradjenta • Insulins • insulin aspart Fiasp, Novolog • insulin degludec Tresiba • insulin detemir Levemir • insulin glargine Basaglar, Lantus, Toujeo • insulin isophane (NPH) Humulin N, Novolin N • insulin lispro Admelog, Humalog • insulin regular Humulin R, Novolin R • Other Supplies • Injection kits • Glucose test strips • • metformin/sitagliptin Janumet • metformin/repaglinide PrandiMet • metformin/saxagliptin Kombiglyze XR • metformin/glyburide Glucovance • metformin/rosiglitazone Avandamet