这项研究提出了一个基于深度强化学习(DRL)的智能自适应控制框架。动态干扰场景下的比较实验表明,与传统的模型参考自适应控制(MRAC)相比,提出的框架将系统稳定时间降低了42%(*P*<0.01),并将控制精度提高1.8个数量级(RMSE:0.08 vs. 1.45)。通过将物理信息的神经网络(PINN)与元强化学习(Meta-RL)整合在一起,混合体系结构解决了常规方法的关键局限性,例如强大的模型依赖性和实时性能不足。在工业机器人臂轨迹跟踪和智能电网频率调节方案中得到验证,该方法的表现优于关键指标的传统方法(平均改进> 35%)。用于边缘计算的轻量级部署方案可在嵌入式设备上实现实时响应(<5ms),为复杂动态系统的智能控制提供了理论和技术基础。
这项工作解决了未知机器人过渡模型下多机器人协调的问题,以确保按时间窗口时间窗口逻辑指定的任务对用户定义的概率阈值满意。我们提出了一个BI级框架,该框架集成了(i)高级任务分配,其中根据机器人的估计任务完成概率和预期奖励分配任务,以及(ii)在履行分配的任务时,机器人独立优化了辅助奖励。要处理机器人动力学中的不确定性,我们的方法利用实时任务执行数据来迭代地完善预期的任务完成概率和奖励,从而无需显式机器人过渡模型即可自适应任务分配。我们从理论上验证了所提出的算法,表明任务分配具有很高的置信度达到所需的概率阈值。最后,我们通过全面的模拟证明了框架的有效性。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)
摘要:力量训练 (ST) 可诱导皮质肌肉适应,从而增强力量。ST 会改变主动肌和拮抗肌的激活,从而改变运动控制,即力量产生的稳定性和准确性。本研究通过量化皮质肌肉一致性 (CMC) 以及力量产生的绝对误差 (AE) 和可变误差 (VE),评估了皮质肌肉通讯和运动控制的变化,该干预为期 3 周,专门用于加强踝关节跖屈 (PF)。在训练前、训练开始后 1 周和训练后进行了脑电图、肌电图和扭矩记录评估。通过最大自主等长收缩 (MVIC)、亚最大扭矩产生、AE 和 VE、肌肉激活和亚最大收缩期间的 CMC 变化来评估训练效果,收缩量为初始和每日 MVIC 的 20%。 MVIC 在整个训练过程中显著增加。对于亚最大收缩,仅在初始扭矩水平下,主动肌激活度随时间降低,而拮抗肌激活度、AE 和 VE 在每个扭矩水平下随时间降低。CMC 不受 MST 的影响。我们的结果表明,神经生理适应在训练后 1 周内就很明显。然而,CMC 不受 MST 的影响,这表明中枢运动适应可能需要更长时间才能转化为 CMC 改变。
摘要:力量训练(ST)诱导皮质肌肉肌肉适应,从而增强强度。ST改变了激动剂和拮抗肌肉的激活,该激动剂改变了运动控制,即力量产生稳定性和准确性。这项研究通过定量对皮层肌肉相干性(CMC)和绝对(AE)和力的误差(VE)进行定量,评估了皮质肌肉沟通和运动控制的改变,并在3周的最大强度训练(MST)干预过程中,特定地设计了型号的误差(VE)。用脑电图,肌电图和扭矩记录进行评估,在训练启动后1周进行了训练,然后进行了训练。对最大自愿等轴测收缩(MVIC),次最大扭矩产生,AE和VE,肌肉激活,肌肉激活以及CMC次级收缩期间的CMC变化的最大训练效果进行了评估。在整个培训完成期间,MVIC显着增加。对于次最大收缩,激动剂肌肉激活仅在初始扭矩水平时随时间降低,而拮抗剂肌肉激活,AE和VE随着时间的流逝,每个扭矩水平都会降低。cmc仍然没有MST的改变。我们的结果表明,训练后1周,神经生理适应很明显。然而,CMC仍然没有MST的改变,这表明中央运动适应可能需要更长的时间才能翻译成CMC改变。
高级计算中心(C-DAC)的开发中心邀请了印度公司从C-DAC转移技术(TOT)的“兴趣表达”(EOI),并以非专属的方式制造,市场,出售和部署C-V2X硬件适配器,用于交通信号控制器。通过此EOI,由M/S技术促进中心,CDAC,Thiruvananthapuram邀请了密封的H1 BID,来自涉及的著名公司的Thiruvananthapuram,参与了制造,安装和通过技术转移(TOT)来制造,安装和维护交通信号控制器。以下产品由C-DAC开发,由Tihan(技术创新枢纽)的资金(自动导航中心)开发,可供行业转让技术(TOT),以便为各种客户端项目制造,市场和实施。
基于脑电图 (EEG) 的脑机接口 (BCI) 通常被认为是针对运动障碍用户的有前途的辅助技术,但由于在现实生活中的可靠性低,在实验室外仍很少使用。因此,需要设计可供最终用户(例如严重运动障碍者)在实验室外使用的长期可靠的 BCI。因此,我们提出并评估了一种基于多类心理任务 (MT) 的 BCI 设计,用于为 CYBATHLON BCI 系列 2019 的四肢瘫痪用户进行纵向训练(3 个月内 20 次训练)。在本次 BCI 锦标赛中,四肢瘫痪的飞行员在赛车游戏中用精神驾驶虚拟汽车。我们旨在将渐进式用户 MT-BCI 训练与基于自适应黎曼分类器的新设计的机器学习流程相结合,该分类器已被证明有望在现实生活中应用。我们遵循两步训练过程:前 11 个课程用于训练用户通过执行两个认知任务(休息和心理减法)或两个运动想象任务(左手和右手)来控制 2 类 MT-BCI。第二个训练步骤(剩余 9 个课程)应用了自适应、独立于会话的黎曼分类器,该分类器结合了之前使用的所有 4 个 MT 类别。此外,由于我们的黎曼分类器以无监督的方式逐步更新,因此它将捕获会话内和会话之间的非平稳性。实验证据证实了这种方法的有效性。也就是说,与初始课程相比,训练结束时的分类准确率提高了约 30%。我们还研究了这种性能改进的神经相关性。使用新提出的 BCI 用户学习指标,我们可以显示我们的用户学会了通过产生越来越匹配 BCI 分类器训练数据分布的 EEG 信号来改善他的 BCI 控制,而不是通过改善他的 EEG 类别辨别。然而,由此产生的改进只对同步(基于提示)BCI 有效,并没有转化为 CYBATHLON BCI 游戏性能的提高。为了克服这个问题