除了民用应用外,人工智能在安全领域也具有巨大潜力,因为该领域的很大一部分活动都依赖于基于正确信息做出的决策(Swillens,2022 年)。因此,人工智能系统是国防部门应用的一个相关选择。例如,人工智能目前已经在信息收集以及驾驶无人机等自动驾驶和半自动驾驶车辆方面发挥着重要作用(Xue、Yuan、Wu、Zhang & Liu,2020 年;Araya & King,2022 年)。然而,在大规模部署这些人工智能系统之前,必须正确分析它们抵御外部威胁的能力。TNO 通过研究人工智能系统稳健性的最新进展做出了贡献。本文总结了该研究的结论。
IST-129 研究任务组 (RTG) 的工作由得到各自组织支持的研究人员完成。代表 IST 小组,我们谨向以下组织对主要研究人员的支持表示感谢。IST-129 研究任务组 (RTG) 由以下人员组成:Dennis McCallam 博士(主席)、美国海军学院和乔治梅森大学网络研究员;Cdr。(英语)Bernt Akesson 博士,芬兰国防研究局;David Aspinall 教授,英国爱丁堡大学;Tracy Braun 博士,美国陆军研究实验室,美国:Roman Faganel,理学硕士,斯洛文尼亚国防部,斯洛文尼亚;Heiko Guenther,德国弗劳恩霍夫 FKIE;Matthew Kellet 博士,加拿大国防研发中心,加拿大; Joseph LoPiccolo,美国海军研究生院; Peeter Lorents 教授,爱沙尼亚商学院; Wim Mees 博士,比利时皇家军事学院;上尉(英语),Juha-Pekka Nikkarila 博士,芬兰国防研究局,芬兰; Teodor Sommestad 博士,瑞典国防研究局 FOI,瑞典;以及来自 Seetru Ltd. 和英国牛津大学的 Margaret Varga 博士。
摘要 - 对生成对抗网络(GAN)的理解进步已导致视觉编辑和合成任务的显着进步,并利用了嵌入在预训练的gan的潜在空间中的丰富语义。但是,现有方法通常是针对特定的gan体系结构量身定制的,并且仅限于发现不促进局部控制的全球语义方向,或者需要通过手动提供的区域或细分口罩进行某种形式的监督。从这个角度来看,我们提出了一种建筑敏锐的方法,该方法共同发现代表空间部分及其外观的因素,以一种完全无监督的方式。这些因素是通过在特征图上应用半非谐音张量分解来获得的,这反过来又可以通过像素级控制来实现上下文感知的本地图像编辑。此外,我们表明发现的外观因子对应于无需使用任何标签的概念的显着图。对广泛的GAN体系结构和数据集进行了实验,表明,与最新的状态相比,我们的方法在训练时间方面更有效,最重要的是,提供了更准确的局部控制。
© 2023 作者。本文根据 Creative Commons Attribution 4.0 International 许可证授权,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供 Creative Commons 许可证的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
摘要 — 生理计算实时使用人类生理数据作为系统输入。它包括或与脑机接口、情感计算、自适应自动化、健康信息学和基于生理信号的生物识别技术有显著重叠。生理计算增加了从用户到计算机的通信带宽,但也容易受到各种类型的对抗性攻击,攻击者故意操纵训练和/或测试示例来劫持机器学习算法输出,从而可能导致用户困惑、沮丧、受伤甚至死亡。然而,生理计算系统的脆弱性尚未得到足够的重视,也没有对针对它们的对抗性攻击进行全面的综述。本文填补了这一空白,系统地回顾了生理计算的主要研究领域、不同类型的对抗性攻击及其在生理计算中的应用,以及相应的防御策略。我们希望这篇评论能吸引更多人对生理计算系统脆弱性的研究兴趣,更重要的是,能提出防御策略,使它们更安全。
摘要 人类和其他动物无需大量教学就能学会从感官体验中提取一般概念。这种能力被认为是由睡眠等离线状态促进的,在这种状态下,先前的经历会被系统地重播。然而,梦的创造性特征表明,学习语义表征可能不仅仅是重播以前的经历。我们通过实现受生成对抗网络 (GAN) 启发的皮质架构来支持这一假设。我们模型中的学习跨三种不同的全局大脑状态组织,模拟清醒、非快速眼动 (NREM) 和 REM 睡眠,优化不同但互补的目标函数。我们在标准的自然图像数据集上训练模型并评估学习到的表征的质量。我们的结果表明,在 REM 睡眠期间通过对抗性做梦生成新的虚拟感官输入对于提取语义概念至关重要,而在 NREM 睡眠期间通过受干扰的做梦重播情景记忆可以提高潜在表征的稳健性。该模型为睡眠状态、记忆重放和梦境提供了一个新的计算视角,并提出了 GAN 的皮质实现。
量子状态断层扫描(QST)是中等规模量子设备中的一项具有挑战性的任务。在这里,我们将有条件的生成对抗网络(CGAN)应用于QST。在CGAN框架中,两个决斗神经网络,一个发电机和一个歧视者,从数据中学习多模式模型。我们使用自定义的神经网络层增强了CGAN,该层可将输出从任何标准的神经网络转换为物理密度矩阵。要重建密度矩阵,使用基于标准梯度的方法在数据上相互训练。我们证明,与同时加速基于投影的基于梯度和迭代的最大可能性估计相比,使用迭代步骤少的数量级和更少的数据,我们的QST-CGAN以高忠诚度重建光学量子状态。,我们还表明,如果在类似的量子状态下识别了QST-CGAN,则可以在发电机网络的单个评估中重建量子状态。
摘要 — 机器学习可以推动技术进步,造福不同的应用领域。此外,随着量子计算的兴起,机器学习算法已开始在量子环境中实现;现在称为量子机器学习。有几种尝试在量子计算机中实现深度学习。然而,它们并没有完全成功。然后,发现了一种结合了附加量子卷积层的卷积神经网络 (CNN),称为量子卷积神经网络 (QNN)。QNN 的性能优于经典 CNN。因此,QNN 可以实现比经典神经网络更好的准确度和损失值,并显示出它们对从其经典版本生成的对抗性示例的鲁棒性。这项工作旨在评估 QNN 与 CNN 相比的准确度、损失值和对抗鲁棒性。索引术语 — 量子卷积神经网络、量子神经网络、卷积神经网络
2实际上,1919年的日食结果并不是有时描绘的那么简单的确定性。尽管在爱丁顿探险方面收集的数据与一般相对论的理论一致,但来自另一个团队使用的望远镜之一的数据似乎挑战了它。但是,由于技术人工制品,后一个数据集被排除在分析之外。这一决定将导致后来针对爱丁顿11的偏见 - 据说他是“一般相对论的热情支持者”(第37页; 12; 12) - 尽管最近对数据的重新分析证明了原始研究的结论13。除了以后的争议外,还值得注意的是,探险报告的出版
简介。自主驾驶(AD)设想在没有人类干预的情况下导航我们的道路,要求高度的可靠性和安全性。AI在满足这些要求中起着至关重要的作用。将AI集成到AD系统中会引入新的挑战,包括基于AI的AD系统对对抗攻击的脆弱性。这些攻击利用了AI模型中的弱点,损害了它们做出准确决策的能力,这给AD生态系统的整体安全性和功能带来了重大风险。为了解决这个问题,许多先前的工作[2]是在对抗攻击和防御方面进行的。但是,许多研究都集中在数字设置和开放数据集围绕,这些数据集无法完全捕获现实世界情景的复杂性。另一方面,如果没有大量资金,实际实验通常是不可行的,并且会带来安全和道德问题。在本文中,我们提出了一种基于逼真的仿真方法,该方法解决了这一紧迫问题。我们开发了Carla-A3,这是一种工具包,重点是在使用Carla(https://carla.org/)创建的光真逼真的模拟中评估OD在存在对抗性攻击的情况下的鲁棒性。在进行这项研究之前,缺乏开源工具来评估OD对关键交通迹象的对抗性攻击的鲁棒性,尤其是在多样化天气条件下,在光真逼真的模拟中简化了对对抗性交通的创造,渲染和评估。我们的工作弥合了这一差距,并有助于开发测试程序,鲁棒性指标以及对增强AD系统中OD的安全性和可靠性至关重要的见解。