在这项工作中,我们对香草生成对抗网络(GAN)的非反应性特性进行了详尽的研究。与先前已知的结果相比,我们证明了基础密度P ∗与GAN估计值之间的Jensen-Shannon(JS)差异的甲骨文不平等。我们界限的优势在应用于非参数密度估计的应用中变得明确。我们表明,GAN估计值和P ∗之间的JS差异与(log n/ n)2β/(2β + d)的速度快速衰减,其中n是样本大小,β决定了p ∗的平滑度。这种收敛速率与最佳的密度相吻合(至对数因素)与最佳的密度相一致。关键字:生成模型,甲骨文不平等,詹森 - 香农风险,最小值率,非参数密度估计。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
巡逻游戏中的基本算法问题是计算防守方的策略 𝛾,使得 Val ( 𝛾 ) 尽可能大。由于一般的历史相关策略在算法上不可行(参见第 3.1 节),最近的研究 [Kučera 和 Lamser,2016 年,Klaška 等人,2018 年] 专注于计算常规策略,其中防守方的决策取决于有关先前访问的顶点的历史的有限信息。正如 Kučera 和 Lamser [2016] 所观察到的,常规策略比无记忆策略提供更好的保护,在无记忆策略中防守方的决策仅取决于当前访问的顶点。然而,提到的算法仅适用于所有边都具有相同长度(遍历时间)的巡逻图。顶点之间更长的距离只能通过添加一系列辅助顶点和边来建模,从而快速推动
这份 NIST 可信和负责任的 AI 报告制定了对抗性机器学习 (AML) 领域的概念分类法并定义了术语。该分类法建立在对 AML 文献的调查基础之上,并按概念层次结构排列,其中包括主要类型的 ML 方法和攻击的生命周期阶段、攻击者的目标和目的以及攻击者的能力和学习过程知识。该报告还提供了相应的方法来减轻和管理攻击的后果,并指出了在 AI 系统生命周期中需要考虑的相关开放挑战。报告中使用的术语与 AML 文献一致,并辅以词汇表,该词汇表定义了与 AI 系统安全相关的关键术语,旨在帮助非专业读者。总之,分类法和术语旨在通过建立对快速发展的 AML 格局的共同语言和理解,为评估和管理 AI 系统安全性的其他标准和未来实践指南提供信息。
近年来,自动驾驶汽车发动机传感器攻击的风险引起了人们的显着关注。这些攻击操纵传感器读数,对基于机器学习模型的对象识别系统构成威胁。非常关注的是“ LiDAR SPOOFENG攻击”,它向欺骗传感器注入恶意信号以检测非易于或缺失的对象[1,2]。这些攻击目标传感器,数据处理和机器学习模型,强调了增强传感器安全性并增强模型鲁棒性的要求。本研究提出了一个新的使用LIDAR的传感系统的攻击矢量,以“ Shadow Hack”,目的是应对其威胁并开发有效的对策。此攻击的概念在于利用激光雷达传感器捕获的点云数据中自然形成的“阴影”(见图1)。LIDAR传感器产生指示对象存在的点云数据,但该数据还包括对象后面形成的阴影。通常,这些阴影在对象检测模型的输出中被忽略,但是它们的存在为对象检测提供了重要的线索。影子黑客通过故意创建它们来欺骗对象检测系统并导致它们出现故障来利用“阴影”的属性。例如,通过放置“阴影材料”,例如在环境中,可以在激光雷达传感器捕获的点云数据中创建误差阴影,从而导致对象检测模型检测不存在的对象(请参见图2)。
摘要 - DATA密集型应用程序(例如人为的说明性和图形处理)变得司空见惯,需要高速IO才能部署这些关键应用程序。为了适应增加的数据需求序列化器/求职者(SERDES)接收器变得越来越复杂,具有不同的均衡方案来减轻通道障碍。对此接收器进行建模,因为它们是至关重要的。本文显示了一种通过生成网络进行固定和变化均衡的高速接收器瞬态建模的方法。该方法将接收器视为黑匣子,其输入和输出是两个不同的域,将问题作为域转换任务构图。所提出的方法使用时间序列的中间表示,成功地对接收器建模。我们证明所提出的方法是输入波形,接收器配置和通道不变的。在固定的均衡设置中,所提出的方法在[0,1]范围内的根平方误差为0.016,对于可变还原剂的同一范围内的误差为0.054。该方法可以在250ms以下预测一组批处理的结果,比同等时间步骤的等效香料模型快。索引项 - DATA驱动,生成,宏模型,Serdes,瞬态
摘要摘要人类预测在不久的将来将会发生的事情的能力有助于对如何在这种情况下做出反应做出明智的决定。在本文中,我们开发了多个深神经网络模型,打算以先前的帧以序列生成下一帧。近年来,生成的对抗网络(GAN)在图像生成领域显示出令人鼓舞的结果。因此,在本文中,我们旨在创建和比较两个生成的对抗模型,通过将gan与卷积神经网络,长期短期内存网络和卷积LSTM网络相结合,为将来的框架预测创建。基于最先进的方式,我们试图在视觉和数值上改善模型的结果。通过比较我们的两个模型的输出,然后将它们与以前开发的模型进行比较,并为此目的提供了将来的研究范围,从而总结了本文。这项工作中提出的两个模型都基于未来框架预测的某些方面表现良好。本文中介绍的结果在未来预测领域至关重要,在机器人技术,自动驾驶和自主剂开发等领域中。
抽象生成的对抗网络(GAN)最近被提议是一种潜在的破坏生成设计方法,因为它们具有出色的视觉吸引力和现实样本的能力。然而,我们表明当前的生成器二歧视架构固有地限制了gans作为设计概念生成(DCG)工具的能力。具体来说,我们基于GAN架构对大规模数据集进行了DCG研究,以促进对这些生成模型的性能的理解,以生成新颖和多样化的样本。我们的发现源自一系列的综合和客观评估,表明,尽管传统的gan架构可以生成逼真的样本,但生成的样本和时尚混合的样本非常类似于训练数据集,表现出明显较低的创造力。我们提出了一种使用GAN(DCG-GAN)的DCG的新通用体系,该架构使基于GAN的生成过程能够以几何条件和标准(例如新颖性,多样性和可取性)为指导。我们通过严格的定量评估程序和涉及89名参与者的广泛定性评估来验证DCG-GAN模型的性能。我们通过为工程设计社区提供了几个未来的研究方向和见解,以实现DCG的甘斯潜力尚未开发的潜力。
摘要:针对使用规范(或经典的)鉴别损失函数(例如原始GAN(Vanillagan)系统中的一个),引入了统一的α-聚化发生器损耗函数,该双目标生成对抗网络(GAN)。发电机损耗函数基于对称类概率估计类型函数Lα,所得的GAN系统称为Lα -GAN。在最佳歧视器下,表明发电机的优化问题包括最大程度地减少Jensen-fα-差异,这是Jensen-Shannon Divergence的自然概括,其中Fα是以损失函数Lα表示的coNVEX函数。还证明,该Lα -GAN问题在特殊情况下恢复了文献中的许多GAN问题,包括Vanillagan,最小二乘GAN(LSGAN),最小值k thorder gan(L k gan)和最近引入的(αd,αd,αd,αd,αd,αd,αd,αd = 1。最后,为三个数据集(MNAIST,CIFAR -10和堆叠MNIST)提供了实验结果,以说明Lα -GAN系统的各种示例的性能。
摘要。深度神经网络 (DNN) 是用于图像分类的最先进的算法。尽管取得了重大成就和前景,但深度神经网络和伴随的学习算法仍面临一些重要挑战。然而,似乎使用精心设计的输入样本(称为对抗性示例)进行攻击和欺骗相对容易。对抗性扰动对人类来说是不可察觉的。此类攻击对这些系统在关键应用(例如医疗或军事系统)中的发展构成了严重威胁。因此,有必要开发抵御这些攻击的方法。这些方法称为防御策略,旨在提高神经模型对对抗性攻击的鲁棒性。在本文中,我们回顾了对抗性攻击和防御策略的最新发现。我们还使用可解释人工智能家族中的局部和全局分析方法分析了攻击和应用的防御策略的影响。