量子技术使我们能够利用量子力学定律来进行诸如通信,计算,计算或传感和计量学等任务。随着第二次量子革命的持续,我们希望看到第一个新颖的量子设备因其出色的性能而取代经典的DECECES。从基础研究到广泛可访问的标准有很大的动力来形成量子技术。量子通讯承诺通过量子密钥分布具有绝对安全性的未来;量子模拟器和计算机可以在几秒钟内执行计算,其中世界上最强大的超级武器需要数十年的时间;量子技术实现了高级的成像技术。可能会出现进一步的申请。全球市场已经意识到了量子技术的巨大潜力。Menlo Systems是该领域的先驱,为这些新型挑战提供了商业解决方案。光子学与量子物理学之间的联系很明显。量子模拟和计算在这些类型的实验中使用冷原子和离子作为Qubits,实验室全球使用光学频率梳子和超稳定激光器。量子通信通常依赖于单个光子,这些光子是在近红外(-IR)光谱范围内精确同步飞秒激光脉冲产生的。量子传感和计量学需要频率梳和激光技术的最高稳定性和准确性。和 - 值得突出显示的应用程序 - 正在替换国际单位系统(SI)中第二个定义的光原子时钟。
摘要:如今,电介质元面是一个有前途的平台,在许多不同的研究领域,例如传感,激光,全光调制和非线性光学器件。在所有不同类型的薄结构中,不对称的几何形状最近引起了人们的兴趣越来越高。尤其是,跨膜中的非线性光 - 物质相互作用构成了实现对光的微型控制的有效方法。在这里,我们通过第二次谐波生成在介电上表面上展示了非线性不对称产生。通过反转泵的照明方向,非线性发射功率由多个数量级调节。此外,我们演示了正确设计的元表面如何在逆转照明方向时在第二个谐波上产生两个完全不同的图像。我们的结果可能会为实现紧凑型纳米光量设备的重要机会铺平道路,以通过密集整合众多非线性谐振器来对应用进行成像。
2) Tsao JY、Chowdhury S、Hollis MA、Jena D、Johnson NM、Jones RJ、Kaplar S、Rajan、Van de Walle CG、Bellotti E、Chua R、Coltrin R、Cooper ME、Evans KR、Graham S、Grotjohn ER、Heller M、Higashiwaki M、Islam MS、Juodawlkis PW、Khan Khan、AD Koehler、JH Leach、UK Mishra、Nemanich RJ、Pilawa-Podgurski RCN、Shealy JB、Sitar Z、Tadjer MJ、Witulski AF、Wraback M 和 Simmons JA,Advanced Electronic Materials 4 [1],1600501 (2018)。 3)M. Higashiwaki、K. Sasaki、H. Murakami、Y. Kumagai、A. Koukitu、A. Kuramata、T. Masui 和 S. Yamakoshi,《半导体科学与技术》31 [3],034001(2016 年)。 4) Y. Yao, R. Gangireddy, J. Kim, KK Das, RF Davis 和 LM Porter,《真空科学与技术杂志》B 35 [3], 03D113 (2017)。 5) Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao 和 M. Liu, Applied Physics Letters 110 [9], 093503 (2017)。 6)Ahn S.、Ren F.、Yuan L.、Pearton SJ 和 Kuramata A.,ECS 固体科学与技术杂志 6 [1],P68(2017)。 7)M. Higashiwaki、K. Sasaki、A. Kuramata、T. Masui 和 S. Yamakoshi,Applied Physics Letters 100 [1],013504 (2012)。 8) M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui 和 S. Yamakoshi, 应用物理快报 103 [12], 123511 (2013)。 9)WS Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. (Grace) Xing, A. Seabaugh, W. Haensch, CV de Walle, Z. Galazka, M. Albrecht, R. Fornari 和 D. Jena, 应用物理快报 104[20], 203111 (2014). https://doi.org/10.1016/S0022-5376(02)00011-0 , Google 学术 Crossref , CAS 10. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira 和 S. Fujita, Applied Physics Express 1 [1], 011202 (2008)。 11)W.-Y. Kong,G.-A.吴,K.-Y.王,T.-F.张 Y.-F.邹博士王和 L.-B. Luo,Advanced Materials 28[48],10725 (2016)。 12) X. Chen、K. Liu、Z. Zhang、C. Wang、B. Li、H. Zhao、D. Zhao 和 D. Shen,ACS Appl.媽媽。接口 8[6], 4185 (2016)。应用物理快报 112[3], 032108 (2018) A. Kyrtsos, M. Matsubara 和 E. Bellotti。 14)Pearton SJ、Yang J、Cary IV、Ren F、Kim J、Tadjer MJ 和 Mastro MA,《应用物理评论》5[1],011301(2018)。 15) Y. Su, D. Guo, J. Ye, H. Zhao, Z. Wang, S. Wang, P. Li 和 W. Tang,《合金与化合物杂志》782, 299 (2019)。 16) Z. Cheng、F. Mu、T. You、W. Xu、J. Shi、ME Liao、Y. Wang、K. Huynh、T. Suga、MS Goorsky、X. Ou 和 S. Graham,ACS Appl.媽媽。接口 12[40], 44943 (2020)。 17)C.-H. Lin, N. Hatta, K. Konishi, S. Watanabe, A. Kuramata, K. Yagi 和 M. Higashiwaki, Applied Physics Letters 114 [3], 032103 (2019)。 https://doi.org/10.1103/PhysRevLett.116.141602 , Google Scholar Crossref 18. T. Matsumae、Y. Kurashima、H. Umezawa、K. Tanaka、T. Ito、H. Watanabe 和 H. Takagi。 19) P. Sittimart、S. Ohmagari、T. Matsumae、H. Umezawa 和 T. Yoshitake,AIP Advances 11 [10],105114 (2021)。 20) Y. Xu, F. Mu, Y. Wang, D. Chen, X. Ou 和 T. Suga, Ceramics International 45[5], 6552 (2019)。 21)W. Hao,Q. He,X. Zhou, X. Zhao, G. Xu 和 S. Long, 2022 IEEE 第 34 届国际功率半导体器件和集成电路研讨会 (ISPSD) (2022) 第 105 页。22) J. Zhang, P. Dong, K. Dang, Y. Zhang, Q. Yan, H. Xiang, J. Su, Z. Liu, M. Si, J. Gao, M. Kong, H. Zhou 和 Y. Hao, Nature Communications 13 [1], 3900 (2022)。
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
我们展示了与 InP 衬底几乎晶格匹配的低噪声随机合金 (RA) Al 0.85 Ga 0.15 AsSb(以下简称 AlGaAsSb)雪崩光电二极管 (APD)。与数字合金 (DA) 相比,RA 由于易于生长而易于制造。910 nm 厚的 RA AlGaAsSb 在 450 C 左右的低温下生长,通过抑制吸附原子的表面迁移率来减轻相分离。通过 X 射线衍射、Nomarski 和原子力显微镜图像验证了 RA AlGaAsSb 材料的高质量。电容-电压测量发现背景掺杂浓度为 6-7 10 14 cm 3,表明 RA AlGaAsSb 材料中的杂质密度非常低。电流-电压测量是在室温下黑暗条件和 455 nm 激光照射下进行的。击穿发生在 58 V 时。增益为 10 时,暗电流密度为 70 l A/cm 2 。该值比之前报道的 DA AlAs 0.56 Sb 0.44 APD [Yi 等人,Nat. Photonics 13, 683 (2019)] 低三个数量级,比 DA AlGaAsSb [Lee 等人,Appl. Phys. Lett. 118, 081106 (2021)] 低一个数量级,与 RA AlInAsSb APD [Kodati 等人,Appl. Phys. Lett. 118, 091101 (2021)] 相当。此外,测得的过量噪声显示 k(碰撞电离系数比)较低,为 0.01。这些噪声特性使 RA AlGaAsSb 倍增器适合商业应用,例如光通信和 LiDAR 系统。
量子技术让我们能够利用量子力学定律来完成通信、计算、模拟、传感和计量等任务。随着第二次量子革命的进行,我们期望看到第一批新型量子设备凭借其优越的性能取代传统设备。人们强烈要求将量子技术从基础研究转变为可广泛使用的标准。量子通信通过量子密钥分发保证了绝对安全的未来;量子模拟器和计算机可以在几秒钟内完成计算,而世界上最强大的超级计算机则需要几十年的时间;量子技术使先进的医学成像技术成为可能。还可能会出现我们目前无法预料的进一步应用。全球市场已经意识到量子技术的巨大潜力。作为该领域的先驱,Menlo Systems 为这些新挑战提供了商业解决方案。光子学和量子物理学之间的联系是显而易见的。量子模拟和计算使用冷原子和离子作为量子比特,世界各地的实验室都在此类实验中使用光学频率梳和超稳定激光器。量子通信通常依赖于单光子,这些光子由近红外 (-IR) 光谱范围内精确同步的飞秒激光脉冲产生。量子传感和计量需要频率梳和激光技术具有最高的稳定性和准确性。值得一提的是,光学原子钟正在取代国际单位制 (SI) 中秒的当前定义。
Sandia国家实验室是由Sandia,LLC国家技术与工程解决方案管理和运营的多军性实验室,这是一个全资拥有的