人工智能的计算和能源成本的爆炸性增长引起了人们对传统电子处理器的替代计算方式的兴趣。使用光子代替电子的光子处理器承诺具有超低潜伏期和功耗的光学神经网络。但是,现有的光神经网络受其设计的限制,尚未达到现代电子神经网络的识别精度。在这项工作中,我们通过将并行的光学计算嵌入到平面相机光学器件中,在捕获过程中执行神经网络计算,然后在传感器上记录之前。我们利用大型内核,并提出了通过低维度重新聚体化学到的空间变化的卷积网络。我们使用具有角度依赖性响应的纳米光子阵列在相机镜头内实例化。与大约2K参数的轻质电子后端结合使用,我们可重新配置的纳米含量神经网络可在CIFAR-10上获得72.76%的精度,超过Alexnet(72.64%)(72.64%),并将光学神经网络推进到深度学习时代。
摘要阿尔茨海默氏病(AD)是一种退化性,无法治愈的神经系统疾病,逐渐损害了认知能力。广告影响着全球数百万的人。活检方法是识别AD的最可靠方法,但它有机会造成无法弥补的伤害。活检有许多非侵入性替代品,可用于诊断AD而没有过高的风险。这些替代方案之一包括计算机辅助的诊断系统,该系统能够鉴定出脑部障碍疾病/疾病。本文使用具有四个不同类别的大脑的磁共振成像扫描来创建一个模型来检测AD。作为研究数据的基础,开放源OASIS数据集被分为80%的培训集和20%的测试集。数据集由中等广告,轻度AD,非常轻度的AD和非AD扫描组成。使用五种不同的卷积神经网络方法进行分类。Densenet-121,Resnet-50,Resnet-18和Alexnet方法的检测精度分别为90.5%,95.1%,88.4%和70.5%。有效网络-7方法未能识别许多AD的情况。
将他们的海报分类为正确的流派是一个问题,它可以使自己可以卷积的网络网络进行卷积,并且可以证明对广告商,制作人和观众带来了巨大的好处,因为它可以帮助观众与观众更容易使观众与观众更容易使观众与Browse and Browse and browse and browse and browse和sece lect se lect电影相结合。Movie-Genre分类的先前工作已经尝试从海报中提取低级功能,使用电影本身的功能以及使用KNN和NaéveBayes的标准Resnet50体系结构。在本文中,我探讨了更深入的预先训练的传统网络(如VGG19和Resnet101)以及Alexnet的应用,以探索转移学习的生存能力和此问题的不同架构。使用IMDB电影海报数据集使用Resnet101实现了42%的最高准确性。 其他网络似乎很好地表明,改进的表现可能更多地取决于平衡数据集和功能工程,而不是在这3个网络架构之间进行更改。使用IMDB电影海报数据集使用Resnet101实现了42%的最高准确性。其他网络似乎很好地表明,改进的表现可能更多地取决于平衡数据集和功能工程,而不是在这3个网络架构之间进行更改。
摘要 — 脉冲神经网络 (SNN) 是一种生物学上合理的模型,具有高计算能力和低功耗的优点。而深度 SNN 的训练仍然是一个悬而未决的问题,这限制了深度 SNN 的实际应用。在这里,我们提出了一种名为 Spiking SiamFC++ 的深度 SNN 架构,用于通过端到端直接训练进行对象跟踪。具体而言,在时间域上扩展 AlexNet 网络以提取特征,并采用代理梯度函数实现深度 SNN 的直接监督训练。为了检查 Spiking SiamFC++ 的性能,考虑了几个跟踪基准,包括 OTB2013、OTB2015、VOT2015、VOT2016 和 UAV123。发现与原始 SiamFC++ 相比,精度损失很小。与现有的基于 SNN 的目标跟踪器(例如 SiamSNN)相比,所提出的 Spiking SiamFC++ 的精度(连续性)达到 85.24%(64.37%),远高于 SiamSNN 实现的 52.78%(44.32%)。据我们所知,Spiking SiamFC++ 的性能优于现有的基于 SNN 的对象跟踪的先进方法,这为 SNN 在目标跟踪领域的应用提供了一条新途径。这项工作可能会进一步促进 SNN 算法和神经形态芯片的发展。
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
摘要:2020 年,COVID-19 的迅速蔓延迫使世界卫生组织 (WHO) 宣布 COVID-19 为全球大流行病。根据世卫组织的说法,预防此类病毒的对策之一是在公共场所佩戴口罩。本文提出了一种基于中性 RGB 和深度迁移学习提取特征的口罩检测模型。建议的模型分为三个步骤,第一步是转换到中性 RGB 域。这项工作被认为是将中性 RGB 转换应用于图像域的首次尝试之一,因为它通常用于灰度图像的转换。第二步是使用层数较少的 Alexnet 进行特征提取。第三步使用两种传统的机器学习算法创建检测模型:决策树分类器和支持向量机 (SVM)。将模拟口罩人脸数据集(SMF)与真实口罩人脸数据集(RMF)合并为一个包含两个类别(戴口罩人脸、不戴口罩人脸)的数据集,实验结果表明,真(T)中性域的SVM分类器测试准确率最高,为98.37%。
方法:视觉技术的进步对多个对象检测和场景理解的领域有重大影响。这些任务是各种技术的组成部分,包括将场景集成到增强现实中,促进机器人导航,启用自主驾驶系统以及改善旅游信息中的应用程序。尽管在视觉解释方面取得了长足的进步,但许多挑战仍然存在,包括语义理解,遮挡,定向,标记数据的可用性不足,照明不均匀,包括阴影和照明,方向变化,对象大小以及背景变化。为了克服这些挑战,我们提出了一个创新的场景识别框架,事实证明这是非常有效的,并产生了非凡的结果。首先,我们在场景数据上使用内核卷积执行预处理。第二,我们使用UNET分割执行语义分割。然后,我们使用离散小波变换(DWT),SOBEL和LAPLACIAN以及文本(本地二进制模式分析)从这些分段数据中提取特征。要识别对象,我们使用了深度信念网络,然后找到对象对象关系。最后,Alexnet用于基于图像中识别的对象将相关标签分配给场景。
摘要 — 神经胶质瘤是成人常见的脑肿瘤类型,源自神经胶质细胞。尽管医学图像分析和神经胶质瘤研究取得了进展,但准确诊断仍然是一个挑战。神经胶质瘤通常可分为高级别(HG)和低级别(LG)。神经胶质瘤的准确分类有助于评估病情进展和选择治疗策略。虽然使用卷积神经网络(CNN)进行医学图像分类已取得显著成功,但对于 CNN 来说,准确对 3D 医学图像进行分类仍然是一项艰巨的任务。主要限制之一是 CNN 难以在 3D 体积分类中优化。在当前的工作中,我们通过引入 CNN 与长短期记忆(LSTM)网络的级联来应对这一挑战,以将 3D 脑肿瘤 MR 图像分类为 HG 和 LG 神经胶质瘤。从预先训练的 VGG-16 中提取特征并将其输入到 LSTM 网络中,以学习高级特征表示,从而将 3D 脑肿瘤体积分类为 HG 和 LG 胶质瘤。结果表明,与从 AlexNet 和 ResNet 中提取的特征相比,从 VGG-16 中提取的特征具有更好的分类准确率。
摘要:抑郁症是社会、心理和生理等多种因素复杂相互作用的结果,研究抑郁症患者的脑部病变有助于医生了解抑郁症的发病机制,促进其诊断和治疗。功能性近红外光谱(fNIRS)是一种非侵入性检测大脑功能和活动的方法。本文首先建立了一种基于fNIRS的抑郁症处理综合架构,包括源层、特征层和模型层,以指导fNIRS的深度建模。鉴于抑郁症的复杂性,结合当前研究,我们提出了一种时频域的特征提取方法和抑郁症识别的深度神经网络。研究发现,与非抑郁症患者相比,抑郁症患者在大脑活动过程中脑区连接较弱,前额叶的激活程度较低。最后,基于原始数据、人工特征和通道相关性,AlexNet 模型表现出最佳性能,尤其是在相关性特征方面,准确率为 0.90,精确率为 0.91,高于 ResNet18 和其他数据上的机器学习算法。因此,脑区相关性可以有效识别抑郁症(与非抑郁症病例),对于抑郁症临床诊断和治疗中脑功能识别具有重要意义。
摘要:多年来,移动设备市场一直在快速增长,而由于这种趋势,移动恶意软件也变得越来越复杂。研究人员专注于恶意软件检测系统的设计和开发,以加强敏感和私人信息的安全性和完整性。在这种背景下,深度学习得到了利用,也应用于网络安全领域,展示了构建模型以检测应用程序是可信的还是恶意的的能力。最近,随着量子计算的引入,我们见证了量子算法在机器学习中的引入。在本文中,我们比较了五种最先进的卷积神经网络模型(即 AlexNet、MobileNet、EffficientNet、VGG16 和 VGG19)、作者开发的一个网络(称为 Standard-CNN)和两种量子模型(即混合量子模型和全量子神经网络)来对恶意软件进行分类。除了分类之外,我们还通过采用梯度加权类激活映射来突出显示从应用程序获得的图像中具有特定预测症状的区域,以及卷积和量子模型在 Android 恶意软件检测中获得最佳性能,从而提供模型预测背后的可解释性。在由 8446 个 Android 恶意和合法应用程序组成的数据集上进行了真实世界的实验,获得了有趣的结果。