○ Introduction to Particle Flow ○ Insights into the Neural Network Design ○ Metrics Overview: Building Blocks for Evaluation ○ Dataset - Jet-like Particle Gun ○ Results - Energy and Angular Resolution ○ Results - Reconstructed Mass ○ Results - Efficiency and Fake Rates ○ Results - Particle Identification 3.摘要和下一步
1。我们希望这些文件会有慷慨的引用,但是我们不需要像您在正式法律写作中看到的那样逐句引文支持。相反,在辩论或与之互动时,或者在依靠它来提出实质性事实时,请参考文献。2。同样,我们有意不要求使用特定的引用格式。对我们来说最重要的是,我们可以看到并理解您用来提出观点的文献,以及(当作品分页时)在工作中我们可以找到特定的实质性支持。3。这些是共识文件。没有提交将完美捕捉团队中任何一个人的观点,也不应该。我们期望一路上有分歧,并做出一些努力来辩论并达成共识。4。如果在关键问题上存在分歧,并且在辩论后您无法达成共识,则可以通过提出相互矛盾的观点及其相对优势/劣势来指出。
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
•本课程旨在针对研究生和高级本科生。•课程将快节奏。•联系(alperen.ergur@utsa.edu)如果您有疑问是否有招生。•本课程不会为您提供数据科学家的工作,但是它会使您更加更好。只是不要说出我的话 - 来倾听行业专家,了解该课程如何使您在学术和行业角色中受益。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。
在2010年代中期引入推荐算法标志着社交媒体企业的转折点。能够分析用户行为和偏好,算法授权有影响力的人和在线品牌通过其引人入胜的内容吸引更多受众。这种转变导致了新型社交媒体成功案例的出现,这是有效的内容营销策略和有机影响者的种植所推动的。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
摘要 - 本文提出了一种旨在检测套利机会的模型,重点是三角形和跨市场套利。利用Bellman-Ford算法和图形理论,该模型有效地确定了负循环,指示了高流动性环境中潜在套利的负循环,并结合了虚拟和实时数据。虽然证明它对于三角套利特别有效,但该模型需要进一步的完善才能提高其在跨市场场景中的有效性。在实际交易方案中,该模型面临着重大挑战,例如需要快速执行,交易费用的影响以及波动金融市场的需求。该研究讨论了必要的模型增强功能,以提高现实世界的适用性和执行效率。