开放式对象检测(OSOD)已成为当代研究方向,以解决对未知对象的检测。最近,很少有作品通过使用Con-Contrastive聚类来分开未知类,在OSOD任务中实现了可观的性能。相比之下,我们提出了一种新的基于语义聚类的方法,以促进语义空间中有意义的群集的对齐,并引入一个类去相关模块以实现群间间的分离。我们的方法进一步不适合对象焦点模块预测对象分数,从而增强了未知对象的检测。此外,我们采用了i)一种评估技术,该技术对低置信度输出进行了惩罚,以减轻对未知对象的错误分类的风险,ii)一种称为HMP的新指标,该指标使用hMP使用Har-nonic Mean结合了已知和未知的精度。我们的广泛实验表明,所提出的模型可以在OSOD任务上对MS-Coco&Pascal VOC数据集有显着改进。
训练补偿动力不匹配的三角洲(残留)动作模型。然后用Delta动作模型集成到模拟器中,以ASAP微调进行预训练的策略,以有效地与现实世界动力学对齐。我们在三种转移方案中尽快评估了ISAACGYM到Isaacsim,Isaacgym到Genesis和Isaacgym,以及真实世界的G1人类人体机器人。我们的方法显着提高了各种动态运动的敏捷性和全身协调,与Sysid,DR和Delta动力学学习基准相比,跟踪误差减少了。尽快实现了以前难以实现的高度敏捷运动,这证明了在桥接模拟和现实世界动力学中的三角洲动作学习的潜力。这些结果表明,可以开发出更具表现力和敏捷的人形生物的有希望的SIM到真实方向。
少量学习 (FSL) 是从少量训练示例中学习识别以前未见过的图像类别的任务。这是一项具有挑战性的任务,因为可用的示例可能不足以明确确定哪些视觉特征最能体现所考虑类别的特征。为了缓解这个问题,我们提出了一种额外考虑图像类别名称的方法。虽然之前的工作已经探索过类名的使用,但我们的方法在两个关键方面有所不同。首先,虽然之前的工作旨在直接从词嵌入中预测视觉原型,但我们发现通过分别处理视觉和基于文本的原型可以获得更好的结果。其次,我们提出了一种使用 BERT 语言模型学习类名嵌入的简单策略,我们发现该策略大大优于之前工作中使用的 GloVe 向量。此外,我们提出了一种处理这些向量高维性的策略,该策略受到跨语言词嵌入对齐模型的启发。我们对 miniImageNet、CUB 和 tieredImageNet 进行了实验,结果表明我们的方法能够持续提高基于度量的 FSL 的最新水平。
用大语言模型(LLM)推理和预测人类意见是必不可少的但具有挑战性的。当前的方法采用角色扮演的角色,但面对两个主要措施:LLMS甚至对一个无关的角色也很敏感,最多可以改变预期的30%; LLM无法战略性地推理人类。我们提出了开场链(COO 1),这是一种简单的四步解决方案建模,如何用personae推理,由价值 - 宽容 - 态度(VBN)the-Ory进行推理。COO将明确的人(人口统计学和意识形态)和卑鄙的人物(历史观点)区分了:(1)将无关的属性与显式人物过滤; (2)将隐式人物排名为选择top-k的优先列表; (3)提出新颖的VBN推理,以提取用户的环境和个人价值,信念和规范变量,以进行准确可靠的预测; (4)迭代VBN推理,并逐渐更大的隐式角色列表来处理潜在的角色不足。COO通过仅提示5个推论呼叫来有效地实现新的最新观点预测,从而将先前的技术提高了多达4%。值得注意的是,通过COO的数据进行微调LMS导致观点一致的模型明显高达23%。
大型语言模型(LLMS)通过利用其语言理解和文本生成功能来显示机器人应用,尤其是任务计划的重要潜力。然而,在诸如家用机器人技术之类的应用中,这些模型的个性化仍然存在着重要的差距。例如,LLM计划可能会发现执行需要个性化的任务,例如决定基于特定的家庭喜好将杯子放在厨房中的位置。我们介绍了LLM-Persyalize,这是一个新颖的框架,旨在个性化家庭机器人的LLM计划。llm-persyalize使用llm计划在多房间,部分观察的家庭环境中执行迭代计划,并利用从本地观察结果动态构建的场景图。要将LLM计划者个性化对用户偏好,我们的优化管道整合了模仿学习和加强自我训练。我们评估了LLM-个性化家政人员,这是一个具有挑战性的现实世界3D基准,用于家庭重排,表明,成功率比现有的LLM计划者增长了30%以上,这表明与人类偏好相符。
多模式大型语言模型(MLLM)在视觉教学调整中取得了显着的成功,但由于大型语言模型(LLM)骨干的自动回归解码,它们的推论既耗时又耗时。传统的加速推理方法,包括模型压缩和从语言模型加速的迁移,通常会损害输出质量或有效整合多模式特征的face Challenges。为了解决这些问题,我们提出了AASD,这是一个新型的框架,用于加速使用精制的KV缓存并在MLLM中对准投机解码。我们的方法利用目标模型的缓存键值(KV)对提取生成草稿令牌的重要信息,从而有效地投机解码。为了减少与长多模式令牌序列相关的计算负担,我们会引入KV投影仪,以压缩KV缓存,同时保持代表性保真度。此外,我们设计了一种目标放射线注意机制,以优化草稿和目标模型之间的对齐方式,从而以最小的计算开销来实现真实推理情景的好处。主流MLLM的广泛实验表明,我们的方法在不牺牲准确性的情况下达到了2倍推理的速度。这项研究不仅为加速MLLM推断提供了有效且轻巧的解决方案,而且还引入了一种新颖的对齐策略,用于在多模式背景下进行投机解码,从而为未来的有效MLLM研究奠定了强大的基础。代码可在https://anonymon.4open.science/r/asd-f571上使用。
评估和塑造人工智能 (AI) 和机器学习 (ML) 对减缓气候变化的影响需要研究、政策和行业的共同努力。然而,关于 ML 如何影响现在和未来的温室气体 (GHG) 排放存在很大的不确定性。这在一定程度上归因于对此类排放影响可能发生的不同机制的描述不足,从而给测量和预测它们带来了困难。因此,我们引入了一个系统框架来描述 ML 对温室气体排放的影响,包括三类:(A) 与计算相关的影响,(B) 应用 ML 的直接影响,以及 (C) 系统级影响。使用这个框架,我们评估和确定影响评估和情景分析的研究和数据需求的优先顺序,并确定重要的政策杠杆。
“自然积极”是一个新兴概念,旨在激励多方行动,遏制和扭转全球自然环境恶化。随着多项举措(主要在政府间进程之外)就共同定义达成一致,自然积极这一总体愿景正变得更加清晰。然而,需要额外的指导来帮助企业衡量其对自然积极成果的贡献并证实其主张。本讨论文件旨在通过总结现有共识和促进关于衡量企业对自然积极成果贡献的讨论来提供初步指导,从而解决该领域的一个关键知识空白。在本讨论文件中,衡量企业对自然积极贡献的挑战已被转化为一系列关于如何解决这些问题的关键信息。这些信息旨在为正在进行的有关该主题的讨论提供意见,因为我们正朝着在自然积极背景下的企业行动和衡量的商定原则迈进。
在气候变化上加速行动的见证障碍之一与数据库,变量和模型的构建以及数据提取有关。根据格兰瑟姆气候变化和环境研究所的说法,人工智能的几个子领域找到了模式,以支持完成特定任务以打击气候变化的模式。通过增强数据驱动的决策来进行气候行动,收集,完成和解释大型和完成数据集。但是,也认识到AI的负面。学习算法,以了解AI的气候影响如何超越其排放量以及技术进步如何促进打击气候变化的过程,研究AI与气候变化之间的融合以及使用高水平技术及其碳效应的积极和负面影响及其碳效应在这项研究中至关重要的。在这项研究中,该研究将通过本研究进行定性分析方法,例如在第二个数据中依赖于第二个数据。关于气候变化和AI,国家科学院出版社的报告,包括: MESO,微观和宏观理论,从环境部收集传播和信息技术部的数据,并考虑到使用与气候变化有关的道德原则声明的重要性。对使用人工智能抵抗埃及气候变化的负面影响和积极影响呈现全面的观点。本文认为,人工智能在全球影响气候变化。
大型语言模型 (LLM) 已显示出作为评估 AI 系统生成的答案质量的自动评估器的前景。然而,基于 LLM 的评估器在用于评估成对比较中的候选答案时表现出位置偏差或不一致性,无论内容如何,都会偏向第一个或第二个答案。为了解决这个限制,我们提出了 P ORTIA,这是一个基于对齐的系统,旨在模仿人类的比较策略,以轻量级但有效的方式校准位置偏差。具体来说,P ORTIA 将答案分成多个部分,同时考虑长度和语义,然后将它们合并回单个提示以供 LLM 评估。对 6 个 LLM 对 11,520 个答案对进行的大量实验表明,P ORTIA 显着提高了所有模型和比较形式的一致性率,平均相对提高 47.46%。它还使 P ORTIA 增强型 GPT-3.5 能够实现与 GPT-4 相当的与人类的一致率,并将 GPT-4 的一致率提高到 98%。后续的人工评估表明,P ORTIA 增强型 GPT-3.5 模型在与人类评估者的一致性方面甚至可以超越独立的 GPT-4,凸显了 P ORTIA 纠正立场偏见、提高 LLM 一致性和提高性能的同时保持成本效率的能力。