附图列表 图 (1-1): - 本项目的风能转换系统框图 .............................................................................. 10 图 (3-2):- 水平轴和垂直轴风力涡轮机视图 .............................................................................. 16 图 (3-3): - 上风向三叶片 HAWT 和下风向两叶片 HAWT 示意图 17 图 (3-4): - 直接驱动和齿轮驱动风力涡轮机的内部结构 ............................................................. 18 图 (3-5):- 水平轴风力涡轮机的配置 ............................................................................................. 19 图 (3-6): - 垂直轴风力涡轮机所需的零件和组件 ............................................................................. 20 图 (3-7): - Simulink 中风力涡轮机模型的参数设置 ............................................................................. 22 图 (3-8): - 具有设置涡轮机参数的涡轮机功率特性 ............................................................................. 22 图 (3-9): - 鼠笼感应发电机剖面图 (Wenping Cao,2012 年 3 月) ............................................................................................................................................. 24 图(3-10): - 双馈感应发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................................. 25 图 (3-11): - 同步发电机剖面图 ............................................................................................................................. 27 图 (3-12): - 永磁同步发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................. 28 图 (3-13): - Matlab 中永磁同步机的配置 (用于项目) ............................................................................................................................. 31 图 (3-14): - Matlab 中永磁同步机的参数 (用于项目) ............................................................................................................. 32 图 (4-15): - 风能转换系统的电力电子部分框图 ............................................................................................................................. 34 图 (4-16): - 三相桥式整流器的电路图 (Rashid, 2014) ............................................................................................. 35 图 (4-17): - 输入波形和三相桥式整流器的输出电压 (Rashid, 2014) ...................................................................................................................................... 36 图 (4-18):- 降压转换器的电路图 (Rashid, 2014) ...................................................................... 39 图 (4-19): - 模式 1 的降压转换器等效电路图 (Rashid, 2014) ............................................. 40 图 (4-20):- 模式 2 操作的降压转换器等效电路图 (Rashid, 2014) ............................................................................................................................................... 40 图 (4-21):- 电感电流连续流动时降压转换器的输入和输出电压和电流的波形 ............................................................................................. 41 图 (4-22): - 恒压控制图像 ............................................................................................................. 45 图 (4-23): - 恒流控制图像 ............................................................................................................. 46 图 (4-24):- 风能转换系统的电池参数设置 ............................................................................. 47 图 (4-25):- 电池的标称电流放电特性 ............................................................................................. 48 图 (5-26):- 不同桨距角值的风力涡轮机特性 ............................................................................. 50 图 (5-27):- 相间电感相对于转子电角度的变化 ............................................................................. 51 图 (5-28): - 降压转换器的等效电路 ............................................................................................. 52 图 (5-29): - 充电控制示意图 (Her-Terng Yau, 2012) ........................ 54 图(5-30): - Buck 转换器等效电路 .............................................................................. 55
西部安大略省和麦克马斯特大学关节炎指数(WOMAC)仪器评估了三个维度(疼痛,僵硬和身体功能),它使用24个项目:疼痛(5),僵硬(2)和身体功能(17)项目。它产生三个子量表得分,每个维度一个分数和一个总索引得分[19]。本研究中使用的WOMAC版本使用0-4的量表,得分较低,表明症状水平较低或身体残疾。分别以疼痛,僵硬和身体功能分别将每个子量表汇总到最高分数20、8和68分。WOMAC总数分数或全局得分通常是通过总结3维度的分数来计算的[20]。问卷是自我管理的,大约需要5-10分钟才能完成。
PITTSBURGH, PA (July 1, 2024) – KaliVir Immunotherapeutics, Inc. , a biotech company developing cutting-edge, multi-mechanistic oncolytic viral immunotherapy programs, today announced that the FDA has cleared the Investigational New Drug (IND) application for the STEALTH-001 study of VET3-TGI in patients with incurable, advanced solid tumors.VET3-TGI是一种新型的癌变免疫疗法,在非临床研究中,特异性靶向并优先杀死肿瘤细胞,同时通过表达其由毒rugin虫-12和TGFBETA伊抑制剂的Transgenes组成的治疗有效载荷来刺激抗癌免疫。第1阶段/1B研究(ClinicalTrials.gov ID NCT06444815)通过静脉输注或肿瘤内注射剂对晚期,不可避免的实体瘤患者进行治疗时,将评估VET3-TGI的安全性和功效。试验将评估VET3-TGI作为单一疗法以及与检查点抑制剂疗法的结合。“这一阶段1/1B临床研究的开始标志着我们继续通过溶瘤病毒疗法重新定义癌症治疗的关键时刻,并战斗先进,无法切除或转移性实体瘤,” Kalivir Immununnumunnunotheperics的CEO Helena Chaye,Ph.D.说。“这标志着我们从VET平台进行的第二次临床试验开始,该试验在2023年宣布了ASP1012专门许可的ASTELLAS的进度。该公司开发了一种独特的基于疫苗病毒的平台,Vaccinia增强了模板“ VET”平台,该平台可以通过修饰进行有效的新型溶瘤疫苗病毒,以最大程度地提高病毒复制并增强静脉输送和扩散。,我们仍然完全致力于在癌症疗法上的可能性上推动界限,并开发出更安全,更有效的选择,这些选择有可能改变肿瘤学的治疗景观。”关于Kalivir Immunotherapeics,Inc。Kalivir Immunotherapeics是一家私有的生物技术公司,开发了尖端的多种机械性癌性病毒免疫疗法计划VET™平台利用离甲酸病毒的较大转基因能力提供与肿瘤免疫表型相匹配的治疗剂,以刺激患者的免疫系统并改变肿瘤微环境。Kalivir的溶瘤病毒候选者的设计旨在安全,有效且系统地可供应,以治疗多种肿瘤类型的癌症患者。Kalivir与Roche和Astellas Pharma进行了单独的合作,以设计和生成来自VET™平台的新型溶瘤疫苗病毒。此外,阿斯特拉斯(Astellas
代谢重编程在癌症发展和患者生存中起关键作用。与其他B细胞恶性肿瘤相比,慢性淋巴细胞性白血病(CLL)的代谢不是高度活跃(1);然而,它发展出代谢修饰的基础,其进展和对药物的抵抗力(2-4)。这些修饰中的一些影响氧化磷酸化(OXPHOS),并帮助癌细胞使用葡萄糖底物的替代方法来产生三磷酸腺苷(ATP)(ATP)(5)。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。 已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。 oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。 由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。 然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。 OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。 随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。 谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。 谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。GLS-1反过来具有2种替代剪接变体:谷氨酰胺酶C(GAC)和肾脏谷氨酰胺酶(KGA)。谷氨酰胺酶C的催化活性高于肾脏谷氨酰胺酶,通常在白血病细胞中上调(10,11)。已经表明,急性髓细胞性白血病(AML)细胞系中GLS-1基因的敲低破坏了谷氨酰胺驱动的OXPHOS,导致细胞增殖减少和凋亡诱导(10)。这表明改变使用谷氨酰胺的药物可能对CLL治疗有用。CLL细胞高度依赖于B细胞受体途径,该途径为细胞发育和成熟提供了信号。B细胞受体刺激的终点是NF-K B和MAP激酶途径的激活,这导致CLL细胞的增殖,迁移和存活。布鲁顿酪氨酸激酶(BTK)在通过B细胞 - 受体信号级联的信号转导中起关键作用。因此,它成为共价BTK抑制剂(例如ibrutinib)的有效靶标(12)。CLL中最常见的细胞遗传突变是13Q缺失(DEL [13Q]),在约50%的CLL病例中发现(13,14)。在DEL [13Q] CLL细胞中,删除了microRNA(miR)簇miR-15a/miR-16-1,导致其肿瘤抑制功能的丧失以及抗凋亡蛋白B细胞淋巴瘤-2(BCL-2)和髓样细胞白血病1(MCL-1)的过表达。失调的BCl-2表达有助于白血病细胞的存活和积累,而MCL-1蛋白对CLL细胞产生保护作用,抑制了凋亡(15、16)。因此,Bcl-2抑制剂venetoclax
a Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan b Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan c Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan d Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan e Division of Respirology,神经病学和风湿病学,内科,库姆大学医学院,日本福库卡,日本福克武库氏病。大学,日本福库卡大学J日本国民大学医学院呼吸医学系
在这项研究中,通过应用X射线辐射评估了13个肿瘤细胞系衍生的皮下模型和一个颅内肿瘤模型。通过使用该设备(X-RAD225,PXI Precision,USA)评估辐射水平对不同肿瘤类型和不同肿瘤模型的响应,从而直接在局灶性肿瘤部位上传递靶向辐射。此外,我们研究了放射线和化学疗法药物(吉西他滨)在H22鼠肝癌细胞中的综合益处,源自皮下造型模型。研究了辐射治疗对NCI-H1975-LUC,人类非小细胞肺癌内颅内模型与人类检查点激酶共济失调 - 毛细血管症杂交(ATT)激酶抑制剂AZD0156结合的影响。此外,还评估了血脑屏障的完整性以及AZD0156的药效学标记PRAD50的存在。研究结果表明,X射线辐射在所有研究的模型中都具有抗肿瘤作用,并且还与放射性敏感剂,吉西他滨或AZD0156结合处理。我们认为,这项研究表明,有很多潜在的完全利用辐射平台来识别辐射敏化器或化学候选者,以使肿瘤学会的管理受益。
•50名儿童患有自闭症谱系障碍(ASD),但诊断的等待时间超过1-3岁•与典型的ASD 2-5岁儿童相比,与典型的儿童(TD)儿童相比,磁共振成像(MRI)可以检测到大脑结构,连接和活动的差异(I.E.xgboost)可以分析图像(即MRI)并从复杂数据中确定模式以做出明智的预测•很少有研究开发了使用MRI
饮酒障碍(AUD)是过早死亡,残疾和痛苦的主要原因。可用的治疗方法具有适中的功效,并且处方不足,因此迫切需要使用良好的有效治疗选择。假设多巴胺与酒精依赖的发展有关。为挑战成瘾的低多巴胺假设,这种随机,双盲,安慰剂对照,13周,多个中心临床试验具有四个平行手臂,旨在评估两种可提高多巴胺水平,varenicline和varenicline和bubropropion和bubropion,单独的以及在AUD中的饮酒中的效果。varenicline是脑烟碱偶然胆碱受体的部分激动剂,会增加多巴胺的释放,而安非他酮则是一种集中作用,去甲甲肾上腺素 - 多巴胺再摄取抑制剂。varenicline先前被证明可减少AUD个体的酒精摄入量。我们假设两种影响大脑多巴胺水平的药物组合的效果大小将超过批准的AUD疗法。
测试,并整合结果以评估蜜蜂的毒理状态。神经毒性(乙酰胆碱酯酶和羧酸酯酶活性),解毒和代谢过程(谷物Thione S-转移酶和碱性磷酸酶活性),免疫系统功能(溶菌酶活性和出血性计数)以及核毒性生物标志物(核毒性生物标记)评估了核骨架性。发现杀菌剂sakura®可激活排毒酶并影响碱性磷酸酶活性。除草剂优雅的2FD和两种农药的组合都表现出神经毒性作用和诱导的排毒pro促成。暴露于除草剂/杀菌剂混合物中的蜜蜂学习和记忆力受损。这项研究代表了理解常用商业PES TICIDES在农业中的毒理作用方面的重大进步,并有助于发展有效策略,以减轻其对非目标昆虫的不良影响。
摘要简介:基于柏拉金的化学疗法(CT)长期以来一直是针对广泛的小细胞肺癌(ES – SCLC)患者的一线标准。在这种情况下,将免疫检查点抑制剂添加到CT(ICI + CT)是一种有趣的选择,尽管其益处显然是适度的。方法:该荟萃分析是在比较一线ICI + CT与ES – SCLC的CT的随机试验中进行的。结果包括总生存期(OS),无进展生存率(PFS),客观反应率(ORR),12个月的反应以及不良事件(AES)。亚组分析是根据所用免疫疗法,性能状态(PS),年龄,铂盐,肝转移和脑转移时计算的。结果:文献搜索确定了一个随机阶段II(ECOG-ACRIN-5161)和四个III期试验(CASPIAN,IMPATER-133,KEYNOTE-604和RECK等人。2016)包括2775例患者(男性66%,吸烟者95%,中位年龄:64岁,PS = 0或1)。 ICI + CT与延长OS [0.82(0.75-0.89)显着相关(危险比[95%置信区间]); P <0.00001]和PFS [0.81(0.75-0.87); p <0.00001],具有抗PD-L1的OS益处[0.73(0.63-0.85); p <0.0001]或抗PD-1 [0.76(0.63-0.93); p <0.006],但对于抗CTLA-4 [0.90(0.80–1.01),p = 0.07]。 ICI + CT或CT的 ORR是可比的[优势比1.12(0.97-1.00); p = 0.12],但在12个月时的响应有利于ICI + CT [4.16(2.81–6.17),p <0.00001]。 ICI + CT [优势比1.18(1.02–1.37)的严重级别3/4 AE更为频繁。 p = 0.03]。2016)包括2775例患者(男性66%,吸烟者95%,中位年龄:64岁,PS = 0或1)。ICI + CT与延长OS [0.82(0.75-0.89)显着相关(危险比[95%置信区间]); P <0.00001]和PFS [0.81(0.75-0.87); p <0.00001],具有抗PD-L1的OS益处[0.73(0.63-0.85); p <0.0001]或抗PD-1 [0.76(0.63-0.93); p <0.006],但对于抗CTLA-4 [0.90(0.80–1.01),p = 0.07]。ICI + CT或CT的 ORR是可比的[优势比1.12(0.97-1.00); p = 0.12],但在12个月时的响应有利于ICI + CT [4.16(2.81–6.17),p <0.00001]。 ICI + CT [优势比1.18(1.02–1.37)的严重级别3/4 AE更为频繁。 p = 0.03]。ORR是可比的[优势比1.12(0.97-1.00); p = 0.12],但在12个月时的响应有利于ICI + CT [4.16(2.81–6.17),p <0.00001]。ICI + CT [优势比1.18(1.02–1.37)的严重级别3/4 AE更为频繁。 p = 0.03]。与CT相比,在诊断时没有脑转移的ES – SCLC的ICI + CT益处[HR 1.14(0.87-1.50); p = 0.34]。结论:除诊断时患有脑转移的患者外,ES – SCLC的一线ICI + CT似乎仅比CT优于CT。