随着AI生成内容的应用程序(例如Chatgpt和稳定的扩散)的开花,已经对深层生成模型引起了很多关注。扩散概率模型(DPM)是一种创新的图像生成模型,灵感来自热力学中的扩散现象,具有稳定的训练过程和简单的模型结构。然而,基于DPM的图像一代中的一个重要挑战是通过结构,布局和颜色约束来控制输出。当前的方法主要集中于在生成过程中引入额外的分类器或在培训过程中添加条件,这仍然遭受诸如不稳定的生成产出和高培训成本之类的问题。为了探索更好的控制策略,在本论文中,我们提出了一个具有前回溯框架的具有结构的图像生成模型。各向异性扩散[1]将是向前图像退化过程的骨干,条件流匹配方法[2]将用于逆转该过程并生成新图像。各向异性的特性使该模型可以在破坏过程中保留边缘和一般结构,从而可以将几何信息作为条件引入图像生成。
SDE扩展的最有希望的平台之一是基于拓扑绝缘体的二极管[1]。Ti的表面提供了强的自旋轨道耦合(SOC),这使得有可能证明具有实质性的磁电效应[2]。已经向基于Ti的Josephson连接处的磁电效应支付了特殊的注意,在那里它以异常的基态相移的形式揭示了自己[3,4]。最近,已经证明,在Ti杂种结构中,在空间分离超导性和铁磁性的结构中,也对基态进行了修改[5,6]。在这种情况下,基态对应于空间不均匀的超导顺序参数。这种超导状态通常称为螺旋状态[7]。超导螺旋状态成为实现SDE的选择之一[8]。由有限的库珀对动量描述,螺旋状态可以在反转和时间反向对称性的系统中进行实现。前者与哈密顿式的SOC术语的出现相连,而后者可以由磁场引入。在这种情况下,库珀对动量的方向取决于磁场的方向。库珀对的有限含量,锁定在磁场的方向上,导致各种系统中的非偏置下降电流。在这里,我们讨论了Ti表面状态在S/TI/S系统中使用平面内Zeeman字段中的Josephson Critistal Crister和非转流运输的六角形翘曲的后果。在基于TI的设备中,六角形翘曲的影响很重要,因为它可以显着改变某些运输特性。例如,众所周知,由于费米表面的变形,在缺陷附近的伴侣效应得到了强烈增强[9]。翘曲术语也导致自旋的各向异性
摘要:光学各向异性在塑造光学特性和设计尖端设备方面具有更高的灵活性。Quasi One维TA 2 NIS 5,具有巨大的光学各向异性,已用于新的激光器和传感器的开发中。在这项研究努力中,我们成功地采集了TA 2 NIS 5的完整介电张量,利用了Mueller基质光谱椭圆的先进技术,从而实现了对其光学各向异性的严格定量评估。结果表明TA 2 NIS 5展示了巨大的双重双重和二分色,ΔN最大值= 1.54和∆ K max = 1.80。这种追求还介绍了这种光学各向异性的基本基础,并借鉴了第一个原理计算和关键点分析的融合。TA 2 NIS 5的各向异性源于不同方向的光学跃迁的差异,并且被证明是由于van Hove的奇异性而没有激子效应。其巨大的光学各向异性有望在新型光学设备的设计中有用,并且物理机制的启示促进了其光学特性的调节。
广泛的纳米光子应用依赖于极化相关的等离子体共振,这通常需要具有各向异性形状的金属纳米结构。这项工作通过破坏材料介电常数的对称性,证明了极化相关的等离子体共振。研究表明,导电聚合物的分子排列可以产生具有极化相关等离子体频率和相应的平面双曲介电常数区域的材料。这一结果不仅仅是基于各向异性电荷迁移率的预期结果,还意味着电荷载体的有效质量在聚合物排列时也变得各向异性。这一独特特征用于展示圆对称纳米天线,其提供与排列方向平行和垂直的不同等离子体共振。纳米天线可通过聚合物的氧化还原状态进一步调节。重要的是,聚合物排列可以使等离子体波长和共振蓝移几百纳米,形成一种新方法,以实现可见光氧化还原可调导电聚合物纳米天线的最终目标。
抽象酵母是一种用于面包制造的酵剂,其中含有酿酒酵母种类的微生物。在面包制造中使用酵母以其实用性和轻松而闻名,但酵母不耐受经常发生。作为替代性,可以使用天然酵母来解决此问题。天然酵母有多种好处,例如增强风味和香气,延长面包的保质期,提高消化率,长时间保持面包柔软度,并没有其他化学添加剂。然而,天然酵母也有一些缺点,例如潮湿且脆弱的质地,这会导致相对较短的存储时间。因此,本研究旨在研究不同的干燥技术对发酵木瓜果水衍生的天然酵母的影响。采用的干燥技术是五天的气干,晒干五天,在40°C下干燥48小时。通过为期5天的空气干燥工艺获得了最佳的酵母,水分含量为13.1%,氮含量为2.07%,乳酸细菌菌落数量为9.50×10 3 cfu/g,平均偏好率为3.92的平均偏好等级为3.92,呈现为3.92。此外,干燥的酵母已成功重新激活,体积从3厘米的初始高度膨胀3倍,至9 cm。
在科学计算中,网格被用作所考虑的数值方法的离散支持。因此,网格极大地影响了数值方法的效率、稳定性和准确性。各向异性网格自适应的目标是生成适合应用和数值方案的网格,以获得最佳解决方案。因此,这是一个活跃的研究领域,正在不断进步。这篇评论文章提出了自 2000 年以来 INRIA Gamma3 团队在应用于计算流体动力学中无粘性流动的各向异性网格自适应领域的研究活动的综合。它展示了这一时期理论和数值结果的演变。最后,讨论了未来十年的挑战。
摘要 — 在车载自组织网络中,自动驾驶汽车在支持车载应用之前会生成大量数据。因此,需要一个大存储和高计算平台。另一方面,云平台上的车载网络计算需要低延迟。应用边缘计算 (EC) 作为一种新的计算范式,有可能在提供计算服务的同时减少延迟并提高总效用。我们提出了一个三层 EC 框架,将弹性计算处理能力和动态路线计算设置为适合实时车辆监控的边缘服务器。该框架包括云计算层、EC 层和设备层。资源分配方法的公式类似于优化问题。我们设计了一种新的强化学习 (RL) 算法来处理云计算辅助的资源分配问题。通过集成 EC 和软件定义网络 (SDN),本研究为车载网络中的资源分配提供了一种新的软件定义网络边缘 (SDNE) 框架。这项工作的新颖之处在于设计了一种使用经验回复的多智能体基于 RL 的方法。所提出的算法实时存储用户的通信信息和网络轨迹状态。给出了具有各种系统因素的模拟结果,以显示所建议框架的效率。我们通过一个真实案例研究来展示结果。
对于具有各向异性特性的设备,必须使用定向孔的微观图形材料。晶体和多孔金属有机框架(MOF)是理想的材料,因为它们的化学和结构性突变性可以精确调整功能性能,用于从微电子到光子学的应用。在此,设计了一个可模式的莫弗胶:通过在X射线暴露下使用光掩膜,MOFFILM在辐照区域分解,在未暴露的区域中保持完整。MOFFILM同时用作抗药性和功能性多孔材料。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。 用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。 此外,定向的MOF模式通过荧光染料功能化。 结果通过旋转激光激发的极化角,显示了MOF中染料的比对。 通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。此外,定向的MOF模式通过荧光染料功能化。通过旋转激光激发的极化角,显示了MOF中染料的比对。通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。
所需的承载能力。 [1,4] 受这种各向异性结构的启发,定向增强材料被引入承重材料中,以在所需的方向上实现最大可能的机械性能。 [5] 仿生结构通常用于工程领域,以制造各向异性材料,这些材料可定向增强强度、膨胀或热性能,并执行特定功能,如可调形状恢复、极化图案或流体阻力。 [4] 这些各向异性材料引起了人们对组织工程 (TE) 的长期研究兴趣,以模拟生物组织的机械强度。包括心肌、动脉、静脉在内的软生物组织的强度和弹性[6,7] 在断裂拉伸强度为 1-10 MPa,弹性模量为 1-30 MPa 范围内。 [8,9] 迄今为止,人们已经研究和开发了各种材料和方法,目的是复制或至少模仿生物组织的结构、机械和功能特征。这样做的动机是为了增加我们的基本理解,[10,11] 影响 TE 中的细胞生长,[12] 或将材料用作医学模型。[13]
