源自生物质废物资源的硬碳(例如燕麦片,稻壳,甘蔗渣,香蕉皮,花生贝壳,苹果Pomace和Corncob)受到了广泛的关注,这是由于可逆的能力以及成本和可持续性考虑因素。[6–12]碳化后生物质的自然微观结构保留在碳化后,提供大量的缺陷和毛孔以及随机取向的假含量结构域。[13]固有的通道和孔创建了相互联系的3D结构,可改善电解质渗透,并提供更多的钠途径和离子缓冲库。[14]此外,一些剩余的杂原子(N,S,P等)可以通过直接的电动积极共价键或引入发起电子受体状态的碳空位缺陷来提供更多的存储位点。[15]
来自生物质废弃物资源(如燕麦、稻壳、甘蔗渣、香蕉皮、花生壳、苹果渣和玉米芯)的硬碳因优异的可逆容量以及成本和可持续性考虑而受到广泛关注。[6–12] 生物质的天然微观结构在碳化后依然存在,提供大量缺陷和孔隙以及随机取向的伪石墨域。[13] 固有的通道和孔隙创建了相互连接的 3D 结构,改善了电解质的渗透并提供更多的钠通道和离子缓冲库。[14] 此外,一些剩余的杂原子(N、S、P 等)可以通过直接电化学活性共价键或通过引入产生电子受体态的碳空位缺陷来提供更多的储存位点。[15]
对应物,由于它们在相同浓度下每个原子释放更多电子的能力。7钙(Ca/ca 2+; 2.87 V与标准氢电极(She))的降低潜力略高于锂(li/li+; 3.04 v vs. she)的潜力略高,但仍比比较多价离子(例如铝(例如al/al/al 3+; 1.68 V vs. vsshe; 1.68 v vs. vsshe)和Magnesium(Mg; 1.68 v vs.she)和Magnesium(mg/mg/mg 2 v. vs.2.36)低得多。8,9这意味着钙可以在与锂的电压类似的电压下执行。钙另外具有2073 mA H CM 3的理论容量,类似于锂的钙容量,但低于镁(3832 mA H CM 3)和铝(8046 mA H CM 3),尽管它们的负降低势更低,导致其细胞电压较低。10–12钙具有比镁(Ca 2+;0.99Å,mg 2+;0.66Å)更大的有效离子半径,同时携带等效电荷,这可能会促进电极中较低的电荷密度,但比其他金属离子离子替代品的功率密度相对较高。13此外,钙具有较弱的电荷密度,与溶剂的配位较弱,而不是镁的动力学能力。14在审查可行的金属离子选项时,必须考虑地球丰度,因为它可以透视某些电池研究途径的寿命和可用性。铝含量最高的可行载体(8.13 wt%),其次是钙(3.63 wt%),钠(2.83 wt%),钾(2.59 wt%),岩浆(2.59 wt%),岩浆(2.09 wt%)和LITHIUM(0.09 wt%)和LITHIUM(0.09 wt%),0.000065 WT%)。15钙的含量较高,使其成为强大且可行的选择。钙离子电池(CIB)没有看到与钾和钠离子相同的成功,这是由于当前使用的电解质的性能不佳,Ca 2+在阴极材料中的互动不佳,低工作伏特(O 2.0 V)和钙金属的Anodic
Metal-Air电池是一种具有独特开放结构的环保储能系统。镁(MG)及其合金已被广泛尝试作为空气电池的阳极。但是,关于MG空气电池(MAB)的研究目前仍处于实验室水平,这主要是由于耐腐蚀性较差引起的低阳极效率。为了减少腐蚀损失并实现MG阳极的最佳利用率效率,从微观结构的角度审查了设计策略。首先,已经讨论了腐蚀行为,尤其是氢进化产生的负差异效应。特别注意阳极微结构对MAB的影响,其中包括晶粒尺寸,晶粒方向,第二阶段,晶体结构,双胞胎和脱位。为了进一步改进,考虑了排放性能,长期堆叠阶阶段及其增强效果。同时,鉴于当前关于MG树突的辩论,潜在的风险,对排放的影响以及消除策略的讨论。微结构控制和单晶将是mAb阳极的有希望的方法。©2024重庆大学。Elsevier B.V.代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放式访问文章。
摘要:本研究论文探讨了用于高性能锂离子电池的多孔活性炭阳极的复杂领域,以满足对先进储能系统日益增长的需求。研究首先深入研究各种合成方法,包括物理和化学活化以及混合方法,旨在优化孔隙率和表面化学。对结构特征的详细研究包括表面积、孔分布、形态和表面化学。先进的显微镜技术和表征工具提供了对结构特征和电化学性能之间复杂相互作用的洞察。走出实验室,本文探讨了多孔活性炭阳极的潜在应用。在电动汽车中,这些阳极有望提高能量和功率密度,这是广泛采用电动交通的关键因素。对于便携式电子设备,重量轻和安全性提高使其成为有吸引力的选择。此外,该研究评估了将多孔活性炭阳极集成到电网规模储能中的可行性,有助于提高可再生能源整合的稳定性和可靠性。解决了环境问题,评估了多孔活性炭阳极的可持续性和可回收性。本文最后总结了主要发现,强调了多孔活性炭在推进锂离子电池技术方面的重要性,并提出了未来的研究方向以克服当前的挑战。大量的参考文献强调了该研究的跨学科性质,结合了多种来源,提供了该领域的全面概述。关键词:电池技术、形态、显微镜、多孔、活性、可再生。1.简介:随着世界向可持续能源解决方案转型,锂离子电池 (LIB) 在为电动汽车、可再生能源存储和便携式电子设备提供动力方面发挥着关键作用。传统阳极材料(例如石墨)在容量、循环稳定性和倍率能力方面受到限制。多孔活性炭源自多种前体,由于其高表面积、可调节的孔隙率和出色的导电性,为解决这些挑战提供了一种创新的解决方案。这些本研究的第一部分深入研究了花生壳活性炭的制备和开发,强调了多级多孔结构的创建。同时,该研究提出了一种从食物垃圾碎屑生物质中生产食物垃圾活性炭(FAC)的可扩展方法,重点介绍了其物理化学特性和多级多孔形态。
锂离子电池 (LIB) 是当今许多高性能应用的首选储能设备。最近,人们对全球变暖和气候变化的担忧增加了电动汽车对锂离子电池的需求和要求,因此迫切需要更先进的技术和材料。在正在开发的阳极材料中,硅 (Si) 被认为是下一代锂离子电池最有希望的阳极候选材料,可取代广泛使用的石墨。Si 不能用作锂离子电池的电极,因此通常使用碳来实现硅在锂离子电池中的适用性。通常,这意味着形成 a-Si/碳复合材料 (Si/C)。高性能锂离子电池工业开发的主要挑战之一是开发低成本、环保、可持续和可再生的化学品和材料。在这方面,假设锂离子电池阳极的性能不受影响,生物基硅和碳有利于应对挑战。本综述论文重点介绍了来自各种生物源(特别是来自植物源生物质资源)的硅和碳阳极的开发。重点介绍了生物质前体、生产硅和碳的工艺/提取方法、影响 LIB 中锂存储的关键物理化学特性以及它们如何影响电化学性能。综述论文还讨论了生物质衍生材料在开发先进电池材料方面面临的当前研究挑战和前景。