在本文中,我们设计并模拟了28/38 GHz双波段多输入多输出(MIMO)贴片天线阵列,该贴片天线阵列在FR2频带(28 GHz和38 GHz)中运行。此天线阵列包括四个具有矩形“ L负两个插槽”形状的类似贴片天线。此外,它适用于5G电子组件,例如智能手机。我们使用高频结构模拟器(HFSS)软件来执行此天线的设计和仿真。此外,该提出的天线阵列提供了更好的性能,例如;大约28 GHz的带宽等于0.69 GHz,38 GHz等于0.86 GHz,等于5。9 dB在28 GHz时,在38 GHz时为9 dB,目录在28 GHz时为6.3 dB,在38 GHz时为9.4 dB,在28 GHz时为95.38%的效率为95.38%,效率为96.53%,为96.53%。
摘要:最近,磁电(ME)天线已成为非常低频(VLF)频段的天线微型化的热门话题,因为它们的大小可以降低到传统电气天线的千分之一。但是,它们仍然患有狭窄的传输/接收带宽和弱辐射强度。为了解决这些问题,设计了带有Microbridge结构的VLF薄片ME天线,并使用了数组连接的方法。测试结果表明,在23 kHz时,ME天线单位的检测极限为636 pt/√Hz,0.12 m时的辐射磁场强度为0.87 nt(输入功率为10 mW)。通过将三个ME天线单元串联具有相同的共振频率,与单个单元相比,输出响应已增加到1.72倍,EM波辐射强度增加到1.9倍。与单个单元相比,通过平行连接两个具有不同谐振频率的ME天线单元,输出响应带宽已扩展到1.56倍,并且信号辐射带宽已扩展到1.47倍。这项工作为我天线的未来大规模阵列提供了宝贵的参考。
[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
摘要 提出了一种使用单面单圈螺旋天线作为反射元件的圆极化宽带反射阵列。设计、仿真和测量了一个 X 波段的 11 × 11 元件反射阵列,它展示了宽带宽和大角度波束扫描性能。通过旋转偏心反射元件可获得 360 ◦ 的相位范围。全波模拟表明,在 10 GHz 的中心频率处实现了 29.1% 的 1-dB 带宽,在法向入射角(φ=0◦,θ=0◦)下最大增益为 23.9 dB,其中聚焦光束的测得增益为 23.6 dB,孔径效率为 51.7%。模拟和测试的轴比在 8.9 GHz 至 10.7 GHz 范围内小于 3 dB。此外,通过将入射角从 + 30 ◦ 变为 − 30 ◦,验证了大角度光束扫描性能
摘要 本研究提出了一种用于脑机接口 (BMI) 的小型双波段植入式天线,可在工业、科学和医疗 (915 MHz、2.45 GHz) 频段工作。该天线灵活且尺寸小巧,易于集成到植入式设备中,同时其双波段谐振可实现节能运行。通过参数分析和优化,天线实现了小型化,且不影响性能。采用缝隙接地和贴片短路针技术实现双波段操作,天线和 BMI 设备的小型化尺寸分别为 9.8 mm 3 和 420 mm 3。对于实际场景,使用具有不同层的七层大脑模型和真实的头部模型来分析天线在异构环境中的性能。如果最大辐射功率在 915 和 2450 MHz 下分别低于 10.1 和 8.1 mW,则计算出的最大特定吸收率 (SAR) 值满足 IEEE 植入式医疗设备安全标准 C95.1-1999 和 C95.1-2005。为了验证模拟结果,用碎猪肉对制作的原型进行测试,得到令人印象深刻的 165 MHz 和 625 MHz 阻抗带宽。测量结果显示在 915 MHz 和 2.4 GHz 频率下分别有 -28.3 dBi 和 -18.5 dBi 的显著增益。这些发现验证了模拟的准确性,没有任何偏差。此外,链路预算分析结果表明天线系统可以以 100 kbps 的数据速率传输长达 10 m 的信号。
多尺度实验 (SWARM-EX) 是由三颗立方体卫星组成的集群,将以综合方式探测赤道电离和热层异常(300 公里 - 600 公里)。• 卫星间距离从 0.25 公里到 1000 公里不等。• 这项探索任务具有科学、工程和教育目标。• 由大学牵头的与 6 所大学的合作项目
摘要 — 本文设计、印刷并分析了一种喷墨印刷开槽圆盘单极天线,该天线在聚对苯二甲酸乙二酯 (PET) 基板上处于 2.45 GHz ISM 频段,可用于早期检测脑中风。PET 因其低损耗角正切、柔韧性和防潮特性而被用作基板。通过实施开槽方法,该天线的尺寸减小到 40 × 38 mm2。印刷天线的带宽为 480 MHz(19.55%),频率范围为 2.25 GHz 至 2.73 GHz。它显示出 99% 的辐射效率,在 2.45 GHz 频率下实现的增益为 2.78 dB。单基地雷达 (MR) 方法被视为通过分析有无中风的头部模型接收信号的变化来检测脑中风。计算了 2.45 GHz 频率下的最大特定吸收率 (SAR) 分布。紧凑的尺寸和灵活的特性使得该单极天线适合于脑中风的早期检测。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
摘要。在此手稿中,已经提出了用于无线应用的紧凑型MIMO天线。提出的天线由F形散热器组成,中心的圆形插槽和底物另一侧的矩形接地平面。所提出的天线的总尺寸为48×48 mm2。天线设计为在两个频带上工作 - 1.5至2.3 GHz和3.7至4.2 GHz,分别为1.8 GHz和3.9 GHz。还可以通过使用各种参数(例如信封相关系数(ECC),多样性增益(DG),总主动反射系数(TARC)等来观察天线的多样性性能。ECC的值为0.02,显示了天线的良好多样性性能。为了验证模拟和测量结果,已制造了所提出的天线,并彼此吻合。