等。2014)。也是,Cr(VI)主要存在为HCRO 4-和Cr 2 O 7 2- pH时为2.0至6.4,CRO 4 2- pH> 6.4 235
钍 (Th) 是一种天然放射性元素,对印度战略核能计划至关重要,由于其放射性和化学毒性,也对健康构成重大风险。准确检测水中的钍不仅对环境监测和健康安全至关重要,而且对于确保其在原子能部计划中的安全和可持续利用也至关重要。ICP-MS 等传统检测方法需要复杂的设置,而光学传感器则提供经济高效、简单且具有选择性的解决方案。然而,由于需要水溶性、低背景荧光荧光团,因此在 100% 水性介质中实现基于聚集诱导发射 (AIE) 的有效 Th(IV) 开启感应一直是一项挑战。
Hong Jin Fan获得了新加坡国立大学的博士学位,随后在Max Planck Microsconture Physics和Cambridge大学进行博士后研究。 自2008年以来,他加入了南洋技术大学。 他的研究兴趣包括灵活的能量存储,用于氢生成和金属空气电池的具有成本效益的纳米材料电催化剂。 他的小组在能量研究中使用原子层沉积和等离子体技术。Hong Jin Fan获得了新加坡国立大学的博士学位,随后在Max Planck Microsconture Physics和Cambridge大学进行博士后研究。自2008年以来,他加入了南洋技术大学。他的研究兴趣包括灵活的能量存储,用于氢生成和金属空气电池的具有成本效益的纳米材料电催化剂。他的小组在能量研究中使用原子层沉积和等离子体技术。
锌离子电池(ZIBS)是一种利用锌离子作为电荷载体的可充电电池。Zibs的发展由于其对低成本和高性能储能系统的潜力而引起了人们的关注。[1]锌丰富,廉价且对环境友好,使其成为储能应用的吸引力。Zibs的一个关键组成部分是电解质,它在电池的性能和稳定性中起着至关重要的作用。[2]电解质是一种液体或凝胶物质,可在充电和排放过程中促进电池阳极和阴极之间的离子运动。它还有助于维持电极的化学稳定性,并防止不必要的侧面反应,从而降低电池的性能。[3]
在对能源存储的需求不断增长的背景下,探索技术的整体可持续性是我们面向未来发展的关键。本文对水性电解质铝离子 (Al-ion) 电池进行了从摇篮到大门的生命周期评估。由于它们具有高功率(约 300 W kg − 1 活性材料)和低能量密度(约 15 Wh kg − 1 活性材料)的特性,因此将这些结果与超级电容器(每千瓦)的结果进行了比较。初步研究结果表明,这些铝离子电池对环境的影响比商用超级电容器要小,因此提供了一种对环境更敏感的能源存储技术解决方案。铝离子电池尚处于早期开发阶段,这一结果表明,继续研究该技术以及其他新兴能源存储系统是有充分理由的。
超级电容器是一种重要的电化学储能装置。1~3单个超级电容器由电极、隔膜、电解液和集流体组成,其中电极材料是最重要的组成部分。4超级电容器技术进步的关键在于开发高性能的电极材料。5多孔碳材料在超级电容器电极中得到了广泛的应用,研究日益深入。6,7碳基超级电容器主要利用电极与电解液界面处形成的双电层进行电荷存储。碳材料的孔结构,包括比表面积、孔径及尺寸分布,是决定碳电极材料电容性能的关键。8,9
摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
在新型储能器件中,水系锌离子电池(AZIBs)凭借低成本、高安全、绿色环保等显著优势成为当前的研究热点,但其正极材料的循环稳定性不尽如人意,给AZIBs的实际应用带来了很大的障碍。近年来,围绕AZIBs正极材料稳定性优化策略开展了大量系统而深入的研究。本文总结了正极材料循环稳定性衰减的因素以及通过空位、掺杂、目标修饰、组合工程等优化AZIBs正极材料稳定性的策略,并提出了相关优化策略的机理和适用的材料体系,最后提出了未来的研究方向。
电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
