可充电电池正在加速从化石燃料到可再生能源的过渡。考虑到所需的大量电池材料,材料和流程中的可持续性是最重要的。在各种下一代电池化学中,锂离子蝙蝠(ALIBS)在本质上是安全的,即使是在高功率密度下,也可以在基于非水溶液的锂离子细胞的现有生产过程中实施。例如,正如Li等人首先提出的,[1] ALIBS是含有有机溶剂的常规电池的可持续替代品,因为水性电力是环保的,不可易受的,并且不可易受的。虽然需要认真解决锂开采的道德问题和环境影响,但水溶液的离子电导率较高,可以为Alibs提供更具吸引力的快速充电能力。然而,水的狭窄电化学稳定性窗口(ESW)为1.23 V极大地阻碍了其水力电解,导致水电解会导致氢进化反应(HER)和氧气
1 Antofagasta的能源开发中心,Antofagasta大学,AV。Antofagasta大学02800,Antofagasta 1271155,智利; markus.bergendahl.freddes@ua.cl(M.B. div>); susana.leiva.gujardo@ua.cl(s.l.-g.); carlos.portillo@unantof.cl(C.P. div>); douglas.olivares@unantof.cl(D.O.) div>2个工程系,位于Atallurgy,Atacama University,AV。 div>Antofagasta大学02800,Antofagasta 1271155,智利; luis.caceres@unantof.cl 4 Arturo Prat University,AV。 div>Arturo Prat 2120,Iquique 1110939,智利; notoro@unap.cl 5 Qica de los材料系,Qualica andBiologí学院,圣地亚哥大学,AV。Libertador B. O'Higgins 3363,圣地亚哥9170022,智利; victor.jimenez@usach.cl(V.J.-A。 div>); maritza.paez@usach.cl(M.P.) div>* corsondence:felipe.galleguillos.madrid@unantof.cl(f.m.g.m.m. )); alvaro.soliz@uda.cl(A.S.)
Julie R. Peller 1 *,Stephen P. Mezyk 2,Sarah Shidler 3,Joe Castleman 1,Scott Kaiser 1,Richard F. Faulkner 2,4
摘要:全球变暖的影响要求开发高效的新型电池。最有前途的电池之一是 Zn-O 2 电池,因为它们提供第二大的理论能量密度,具有相关的安全性和足够长的循环寿命,适合大规模使用。然而,它们的工业应用受到一系列障碍的阻碍,例如初始充电和放电循环后能量密度快速降低、阴极效率有限或放电和充电之间的过电位升高。这项工作重点是合成钛化合物作为 Zn-O 2 水性电池阴极催化剂及其表征。结果表明,在空气中 500 ◦ C 热处理期间消除有机模板后,表面积为 350 m 2 /g。进行了不同的热处理,调整不同的参数,例如 500 ◦ C 的中间处理或使用的气氛和最终温度。对于没有 500 ◦ C 中间温度步骤的样品,表面面积仍然很高。拉曼光谱研究证实了样品的氮化。SEM 和 XRD 显示大中孔隙率和氮的存在,电化学评估证实了该材料在氧反应还原 (ORR)/氧释放反应 (OER) 分析和 Zn-O 2 电池测试中的催化性能。
摘要 - 帕罗西汀HCl的水解和光解,一种选择性的5-羟色胺再摄取抑制剂,在水溶液溶液中(pH 5、7和9),合成腐殖质水中,在湖水中研究了25 8 c,在黑暗中,在黑暗中,在生长室中与富含功能的灯光相结合,在黑暗中和散热室中研究了Ultverscult subland subland cum sun veftiment cun uft ultver inftiment cun varvemult(Uver)(UV)(UV)(UV)(Uv)Uvv(UV)帕罗西汀在所有水性培养基中通过模拟阳光在4天内完全降解。通过增加pH,帕罗西汀HCl的光解会加速。pH 5、7和9处的T 1/2值分别为15.79、13.11和11.35 h。合成腐殖质水和两个湖水中帕罗西汀的半衰期比pH 7缓冲液中的长度略长。检测到两种光产物,并通过液体色谱图在正模式下鉴定出其结构。光产物I被发现光解不稳定,在辐照12至18 h后逐渐降解。但是,在整个实验期间,光产物II在光解中非常稳定,表明它持续进行进一步的光降解。在黑暗中,在所有水溶液中,帕罗西汀都在30-d期间稳定。总而言之,帕罗西汀是一种相对光的药物,具有地表水中阳光的光降解可能性。
锌离子电池(ZIBs)因其成本低、安全性高、资源丰富等特点而受到广泛关注。然而,到目前为止,寻找具有高工作电位、优异电化学活性和良好结构稳定性的正极材料仍然存在挑战。为了应对这些挑战,人们广泛研究了微结构工程来调节正极材料的物理性质,从而提高了ZIBs的电化学性能。本文主要集中于各种ZIB正极材料的微结构工程的最新研究成果,包括成分和晶体结构选择、晶体缺陷工程、层间工程和形貌设计。进一步讨论了ZIB正极性能对水性电解质的依赖性。最后,提出了ZIB正极材料微结构工程的未来前景和挑战。旨在深入了解微结构工程对Zn 2 +的影响
气候变化被认为是全球最大的挑战,在其最前沿是能源的话题。虽然非常重要,但有关能源的辩论已成为一种正常性。与能源储能应用的材料合成相关领域也在增长,以及对可再生能源的工业电气化需求。水性超级电容器是一种能够提供高功率密度的储能设备,同时在环境友好的媒体中保持长期环环性。但是,他们的挑战包括在能量密度,安全性和低成本的电极生产方面保持较高的表现。mxene是由H,OH和F组终止的二维过渡金属碳化物/氮化物的家族。该材料表现出与其3D母体材料最大相位的能源应用相关的出色物理和化学特性。自2011年发现以来,由于其高电导率(20,000 s.cm -1)和可以达到900 FCM -3的体积功能,MXENE(例如Ti 3 C 2 T Z)在储能领域得到了广泛研究。但是,报告的MXENE的合成过程充满了耗时的危险程序。本文的第一部分提出了一种新的Ti 3 C 2 T Z Mxene合成的创新方法,其中MXENE在几毫秒内合成了MXENE,借助30 MHz频率表面声波(SAW)和0.05m的LIF。在硫酸电解质中研究了MO 1.33 CT Z。MO 1.33 CT ZTi 3 Alc 2 Max相中的铝元素被所谓的“局部HF”蚀刻,并将粉末转化为2d Ti 3 C 2 T Z。该方法显示了与先前报道的合成技术相当的MXENE,如该材料的电型性能所证明的那样。该论文的第二部分着重于研究相对较新的MXENE家族在水溶液中产生的I-含量的电化学性能。i -mxene在2017年报道,具有化学式MO 1.33 ct z,是平面内化学有序化学蚀刻的产物(MO 2/3 SC 1/3)2 ALC I -MAX相。该电解质为电极电位窗口和电容设置了极限,因此,使用后处理方案来增强电化学性能。
MG-ION电池(AMIBS)具有良好安全性,低成本和高特定能量的优势,已被认为是一种有希望的能源存储技术。然而,阿米布的性能始终受到缓慢的扩散动力学的限制,以及由高电荷密度Mg2Þ与宿主材料之间的强静电相互作用引起的阴极材料的结构降解。在这里,层状结构化的NiOOH作为碱性电池的传统阴极,最初被证明可以实现质子辅助的Mg-(de)Intercration Intercration Chemistriation,具有高排放平台(0.57 v)中性水解中性水解的化学。从唯一的核心/壳结构中构成的好处,由此产生的NiOOH/CNT阴极达到了122.5 mAh G 1的高容量和长周期稳定性。进一步的理论计算表明,水合Mg 2的结合能更高
摘要:在这项工作中,开发了用于水中的GD 3+离子检测的电解石墨烯场效应晶体管。通过在聚酰亚胺的光载体上制造了晶体管的源和排水电极,而石墨烯通道则是通过用喷墨打印氧化石墨烯墨水墨水来获得的,随后将氧化石墨烯墨水还原以减少氧化石墨烯。GD 3+选择性配体DOTA由炔烃连接器功能化,以通过在金电极上的Chemistry将其移植而不会失去其对GD 3+的影响。全面描述了合成途径,配体,接头和功能化表面的特征是电化学分析和光谱。AS官能化电极用作石墨烯晶体管中的栅极,因此可以调节源量电流作为其电势的函数,该电源本身是由在门表面上捕获的GD 3+浓度调节的。即使在包含其他潜在干扰离子的样品中,获得的传感器也能够量化GD 3+,例如Ni 2+,Ca 2+,Na+和3+。量化范围从1 pm到10 mm,对于三价离子,灵敏度为20 mV dec -1。这为医院或工业废水中的GD 3+定量铺平了道路。
低成本和高效率的基于Zn的流量电池(ZFB)已成为可再生能源开发的有前途的能源存储技术之一。然而,在ZFB中,由于存在Zn 2 +,一个阴离子交换膜(AEM)损失离子电导率。Zn 2 +沉淀的侧反应导致AEM与第四纪基团的离子交换分解。虽然阳离子交换膜(CEM)由于离子交换组和阴离子之间的静电相互作用而阻碍阴离子结构。为了解决ZFB中离子交换膜不良的电导率,基于聚醚酰亚胺(PEI)的多孔离子导电膜是通过ZFBS的水相反转技术开发的。离子导电机制基于孔径的排除,这减轻了离子交换组对离子电导率的影响。通过引入合适的聚乙烯基吡咯烷酮(PVP)并控制四氢呋喃(THF)挥发时间,可以进一步改善膜性能。结果表明,在Zn/4-羟基-2,6,6-6,6-四甲基二哌啶中,1-氧基(TEMPO-OH)流量电池,库仑效率(CE)超过98%,能量效率(EE)在20 mA-cm-2-2-2中的能量效率(EE)可实现,并且可以在20 mA cm-2-2中以20 ma-2的供应来实现。 150个周期。基于PEI的多孔膜(低成本和高效率)被认为是ZFB的有希望的策略。