摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
摘要:陶瓷墨水的稳定流变特性是喷墨印刷(IJP)的关键要求,应根据雷诺和韦伯的数字满足。在本文中,引入了反向微乳液,以合成单分散的纳米化陶瓷粉末,平均大小小于100 nm。比较两种不同的分散剂,即多丙烯酸铵(PAANH 4)和多丙烯酸辅助(PAA),表明前者对陶瓷墨水产生了良好的分散效应。沉积比,Zeta电位,表面张力,粘度和墨水密度,并计算了Reynolds和Weber数量以及Z值。在老化72小时后,可以实现稳定,均匀且高的固体负载(20 wt%)陶瓷墨水。最后,陶瓷油墨在喷墨打印过程中显示了所需的可打印属性。将喷墨打印技术与烧结过程相结合,Ni-Mn-OFIM有可能监视智能可穿戴设备的温度和湿度参数。
摘要:间歇性和瞬时可再生能源迫切需要发展具有高功率能量密度的本质安全电能存储技术。水系锂离子电池(ALIB)由于其不易燃的特性而成为一种很有前途的集成技术。然而,受阳极材料的限制,它们的能量密度与非水系电池的能量密度存在相当大的差距。在此,首次尝试将 Wadsley-Roth 相铌基氧化物(M-Nb-O)用于水系锂离子阳极。通过与 M-Nb-O 阳极(Zn2Nb34O87)的代表物配对,ALIB 的输出电压、能量密度和功率密度显着增加,长期循环寿命显着提高。单独来看,能量型全电池(NCM811// Zn2Nb34O87)可产生高记录密度能量(191.5 Wh kg −1),平均放电电压高达约 2.25 V,而功率能量型全电池(LiMn2O4//Zn2Nb34O87)在超高粉末密度 16 489 W kg −1 下表现出优异的倍率性能,能量密度高达 30.0 Wh kg −1。
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。
已经做出了许多努力,以实现H 2 O掩盖的振动指纹。例如,由于其IR吸收带从H 2 O的吸收带转移,因此在FTIR测量中使用了替代溶剂(例如D 2 O,CCL 4和CS 2)。[4]另一种潜在的途径是缩短水溶液中的有效IR光学路径,以抑制H 2 O的干扰,例如吸收的总反射率(ATR)。[6]然而,由于弱光 - 材料的相互作用,溶剂替换和ATR都无法增强对纳米级的FTIR敏感性。因此,开发了表面增强的红外吸收(SEIRA)技术,用于原位探测纳米级样品,通过增强的表面等离子体的近场。[7]尽管基于金属的seira已经达到了高度的敏感性,但检测极限最终通过中IR中金属的光限制相对较差,最终限于单层分子。石墨烯等等离子体的极高光限制使其对Seira应用具有吸引力。[8]石墨烯 - 普拉烯增强FTIR的敏感性可以达到亚纳米尺度,这在识别固相和气相中的分子方面已被证明。[8a,9],在内部反射过程中,石墨烯可以增加水溶液中分子的IR吸收,但是缺乏可调性以及对笨重的ATR仪器的利用可防止其实际使用。[11]
根据 2021 财年 NDAA 第 318 条,国防部各部门必须报告任何 AFFF 使用情况,或超过 10 加仑 AFFF 浓缩液或 300 加仑混合泡沫的泄漏情况。在 24 小时内,应通过适当的指挥系统将通知转发给国防部环境和能源复原力副助理部长办公室 (ODASD(E&ER)),电子邮件为 osd.pentagon.ousd-a-s.mbx.asds-environment@mail.mil。本政策及其报告要求实施了 2021 财年 NDAA 要求,并取代了之前的 ASD(S) 备忘录“水成膜泡沫使用和泄漏报告”(日期为 2020 年 1 月 13 日)。常规维护活动 1、码头船舶测试以及完全控制和处置 AFFF 的培训和测试活动不构成根据本政策需要报告的使用或泄漏。本报告必须使用附件 1 中的模板(24 小时 AFFF 释放和响应报告电子表格)包含以下信息:
氧化还原流量电池是长期,大规模储能应用的有前途的技术。其中,非水氧化还原流量电池(NARFB)代表了变换的流量电池系统,因为NARFBS可能提供的能量密度高于水流电池。然而,NARFB仍然存在许多技术挑战,包括缺乏高性能膜,氧化还原材料的低溶解度以及循环效率不佳。膜在NARFBS中起着重要功能,因为它们可以进行选择性离子运输,同时在驱动器和天主解中提供分离。NARFB膜开发是一个新兴的研究领域,本文回顾了其设计和关键因素,这些因素影响膜特性,包括溶剂摄取,离子运输和氧化还原物种的渗透性。对非水溶液中的膜行为有了更大的了解,为开发NARFB的下一代膜提供了设计原理。最后,我们总结了NARFB的挑战,目标指标和未来观点。
至关重要。[1–3] 人们做出了巨大研究努力,致力于开发新型电池材料,以提高循环寿命、安全性、能量密度和功率密度[4,5],同时研究也集中于理解可以替代主要液体电解质锂离子电池技术的新型电池化学。[6–10] 钠离子技术已成为最有前途的电池应用之一。[11–15] 有趣的是,虽然人们的注意力集中在某种特定的电池化学上,这种化学能使能量密度提高一个数量级[16,17],或在比容量或工作电压方面优于目前可用的电活性材料的特定电极材料上[18–20],但人们往往忽视电池界面在电池的安全性、功率能力、锂沉积物形态、保质期和循环寿命方面发挥的关键作用。[21]
在新型储能器件中,水系锌离子电池(AZIBs)凭借低成本、高安全、绿色环保等显著优势成为当前的研究热点,但其正极材料的循环稳定性不尽如人意,给AZIBs的实际应用带来了很大的障碍。近年来,围绕AZIBs正极材料稳定性优化策略开展了大量系统而深入的研究。本文总结了正极材料循环稳定性衰减的因素以及通过空位、掺杂、目标修饰、组合工程等优化AZIBs正极材料稳定性的策略,并提出了相关优化策略的机理和适用的材料体系,最后提出了未来的研究方向。