单元II IOT-AN建筑概述和艺术课的建筑状态:10 IoT-An Anchlectural概述:建筑架构,主要设计原理和所需功能,IoT体系结构大纲,标准注意事项。物联网体系结构 - 艺术:简介,艺术状态,参考模型和体系结构,物联网参考模型 - 物联网参考架构简介,功能视图,信息视图,部署和操作视图,其他相关的架构视图。单元III工业与安全与安全班级工业互联网:8介绍,工业4.0,工业互联网(IIOT),IIOT架构,基本技术,应用和挑战。安全与安全:简介,系统安全,网络安全,通用应用程序安全,应用程序流程安全和安全性,
电气和电子工程师协会 › iel7 作者 C Wang · 2022 · 被引用 1 — 作者 C Wang · 2022 被引用 1 (MPI) [27],并行计算中的通信标准。... 基于代理的电力系统建模和仿真的计算。
本研究调查了生成人工智能(Genai)对建筑教育中数字素养发展和整体能力的影响。研究设计着重于应用Genai工具,例如Chatgpt,Midjourney,Bricscad Bim和VR/AR软件,及其对建筑学生的整体能力的影响。本文使用了一种混合研究方法,该方法结合了建筑学生在住宅重新审视项目中的进步案例研究,使用Midjourney,Bricscad BIM和VR/AR软件,以及对350个在2023-2023-2024-2024-2024校学年的大陆大学和香港的两名知名大学的在线问卷调查。这种方法旨在加深对Genai对整体能力框架内的概念创造力,主动性,自我管理和压力承受能力的影响。研究结果表明,建筑专业的学生在设计概念阶段经常使用Genai工具,这表明他们与特定的教学法中的研究和概念性创造力相关。此外,这些发现揭示了频繁的Genai工具使用情况之间的潜在相关性,时间管理的改善以及建筑专业的焦虑症减少。结果增强了对建筑教育中数字技术的理解,同时为未来的Genai实施提供了宝贵的见解。这项研究强调了融合Genai的潜在好处,强调了它们在培养创造力,有效的时间管理和压力耐受性中的作用。
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
请启用 JavaScript 以查看页面内容。您的支持 ID 是:8203161999611281366。这个问题是为了测试您是否是人类访问者并防止自动提交垃圾邮件。
Darktrace 免疫系统利用开放式架构,无缝接入不断发展的多样化生态系统。通过一键式集成,该平台可以立即获取新形式的遥测数据,在既定的工作流程中分享定制的 AI 见解,并与各种技术进行互操作,以在电子邮件系统、内联防御和协作平台上提供自主响应。除了越来越多的一键式集成之外,Darktrace 免疫系统还有多种数据获取和输出方法,以最适合您的生态系统。
心血管疾病是全球性的全球健康问题,在全球范围内促进了发病率和死亡率。在这些疾病中,心律不齐的特征是心律不规则,提出了巨大的诊断挑战。这项研究介绍了一种使用深度学习技术,特别是卷积神经网络(CNN)的创新方法,以解决心律不齐分类的复杂性。利用多层心电图(ECG)数据,我们的CNN模型,包括六层带有残留块的层,在识别五种不同的心跳类型方面表现出了令人鼓舞的结果:左束分支块(LBBB),右束分支块(RBBB),右束支(RBBB),tryal buntial Efferatial Efferatial Promature Contract(apc),thematial Efferatial Contract(APC),phatcral andultral andultral andultral and andult andultral and anductal and p. pvC(PVC)(PVC),PVC。通过严格的实验,我们强调了我们方法学在增强心血管心律不齐的诊断准确性方面的变化潜力。
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
• 理解计算机体系结构的高级硬件和软件问题 • 理解多处理器体系结构和连接机制 • 理解多处理器内存管理 模块 I:(10 小时)微处理器和微控制器、RISC 和 CISC 体系结构、并行性、流水线基础、算术和指令流水线、流水线风险、超标量体系结构、超级流水线体系结构、VLIW 体系结构、SPARC 和 ARM 处理器。 模块 II:(10 小时)基本多处理器架构:Flynn 分类、UMA、NUMA、分布式内存架构、阵列处理器、矢量处理器。 模块 III:(10 小时)互连网络:静态网络、网络拓扑、动态网络、云计算。 模块 IV(10 小时)内存技术:缓存、缓存内存映射策略、缓存更新方案、虚拟内存、页面替换技术、I/O 子系统。 结果
