其他公司则在努力将数字世界与物理世界重新结合起来。谷歌一直在慢慢将一项名为 Live View 的新寻路功能集成到谷歌地图中。它通过地理定位器和智能手机摄像头,为用户的环境创建详细信息或方向的叠加层。13 Snap 也一直在将其 AR 技术扩展到滤镜之外,与亚马逊、彪马和拉尔夫劳伦等公司合作,将 3D 产品建模和增强现实试穿功能融入购物体验。14,15 数字与物理界限的模糊正在揭示新的商业模式:该公司正在推出一项新的“装扮”功能,用户可以直接在应用程序中发现、试穿和购买新产品。该公司报告称,仅一年时间,就有 2.5 亿人使用其 AR 购物镜头超过 50 亿次。
本论文研究了使用里德堡原子的量子模拟。量子模拟的理念是使用一个可控性良好的量子系统来模拟另一个量子系统。量子模拟旨在前瞻性地解决经典计算机无法有效处理的具有挑战性的模拟问题,例如探索高度纠缠的多体基态和动力学。我们专注于所谓的模拟量子模拟,这种模拟量子模拟直接实现要模拟的系统,并避免通用门方法的开销。可实现系统的类别取决于底层平台的特性。一般来说,量子模拟平台必须可靠且可控性良好。此外,与退相干时间相比,相互作用必须很快。满足这些要求的平台例如超导量子比特和捕获离子。另一种方法是在光镊中使用中性原子。可以通过将原子激发到里德堡态(即具有高主量子数的电子态)并利用里德堡原子之间的强偶极相互作用来使原子相互作用。过去十年的快速发展使得使用这种方法模拟任意二维和三维晶格上的各种自旋哈密顿量成为可能,即使在超出精确数值处理的范围内也是如此。本论文涵盖的研究为量子模拟的实验实现提供了理论支持,为这一进展做出了贡献。本论文的重点有两个方面。首先,我们讨论了里德堡相互作用势的计算及其对实验参数的依赖性。其次,我们利用我们对里德堡相互作用的见解,展示了如何将精确的里德堡原子量子模拟应用于研究各种量子自旋模型。具体来说,我们展示了如何研究不同的拓扑相。后者是与巴黎的 Antoine Browaeys 实验小组密切合作进行的。在一个附带项目中,我们与格拉斯哥的 Andrew Daley 小组和 Gregory Bentsen 合作提出了一项用里德堡原子实现快速扰乱自旋模型的提案。下面,我们概述了本论文的章节。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
这是以下文章的同行评审版本:用于 ORR、HER 和 OER 的 C1N1 衍生碳材料中金属纳米团簇和单原子的先进设计,最终形式已在 Advanced Functional Materials 上发表:2300405 (2023),https://doi.org/10.1002/adfm.202300405。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。未经 Wiley 明确许可或适用法律下的法定权利,不得对本文进行增强、丰富或以其他方式转化为衍生作品。不得删除、隐藏或修改版权声明。文章必须链接到 Wiley 在 Wiley Online Library 上的记录版本,并且禁止第三方从 Wiley Online Library 以外的平台、服务和网站嵌入、框架或以其他方式提供文章或其页面。
摘要:锗已成为自旋电子学和量子信息应用领域中极具前景的材料,与硅相比具有显著的基本优势。然而,利用施主原子作为量子比特来制造原子级器件的努力主要集中在硅中的磷上。将磷以原子级精度定位在硅中需要进行热结合退火,但这一步骤的成功率低已被证明是阻碍其扩大到大规模器件的根本限制。本文,我们对锗 (001) 表面上的砷化氢 (AsH 3 ) 进行了全面研究。我们表明,与之前研究过的任何硅或锗上的掺杂剂前体不同,砷原子在室温下完全结合到替代表面晶格位置。我们的研究结果为下一代原子级供体设备铺平了道路,该设备将锗的优越电子特性与砷化氢/锗化学的增强特性相结合,有望扩大到大量确定性放置的量子比特。
多量子比特 Toffili 门具有实现可扩展量子计算机的潜力,是量子信息处理的核心。在本文中,我们展示了一种原子排列成三维球形阵列的多量子比特阻塞门。通过进化算法优化球面上控制量子比特的分布,大大提高了门的性能,从而增强了非对称里德堡阻塞。这种球形配置不仅可以在任意控制目标对之间很好地保留偶极子阻塞能量,将非对称阻塞误差保持在非常低的水平,而且还表现出对空间位置变化的前所未有的稳健性,导致位置误差可以忽略不计。考虑到固有误差并使用典型的实验参数,我们通过数值方法表明可以创建保真度为 0.992 的 C 6 NOT 里德堡门,这仅受里德堡态衰变的限制。我们的协议为实现多量子比特中性原子量子计算开辟了一个高维原子阵列平台。
• 任意单量子比特旋转门和相位门,加上某些双量子比特门(如CZ或CNOT)门,组成通用门集。• 单量子比特门需要精确控制原子与电磁波的相互作用;双量子比特门需要精确控制原子与原子之间的相互作用
• 需要改变交通模式,使人类真正成为太空旅行物种 • 核能使更高能量的系统能够在极端环境下持续运行 • 核推进系统可以实现对火星及更远地方的强大探索,对于快速深空载人星际任务至关重要 • 对于地面探索任务,空间核动力系统是一个非常有前途的选择 • 对于需要高电力输出的任务,例如载人火星任务和太空渡轮,基于裂变或聚变反应堆的电力系统可能是一个非常有竞争力的选择 • 有前景的研究和开发正在进行中,并进行了讨论 - 核热推进、核电推进、等离子推进和直接聚变驱动
量子技术正在从实验室前进到商业世界。但是,如果没有量子系统的精确控制,就无法建立从科学发现到革命技术的这一道路。量子最佳控制描述了一种技术系列,该科学家族通过系统地塑造应用于系统的控制场来改善量子操作。优化可以选择量子硬件的定制控制策略,以实现其全部潜力。在本论文中,我们将最佳控制应用于自旋系统,即钻石和戊季苯掺杂的萘的氮呈中心,以及被困的原子,特别是Rydberg Atoms和Ultracold原子冷凝物。genally,一个具有清晰目标的良好模型系统对应于通过开环优化接近定义明确的控制问题,即使用模型。但是,当未知的实验或环境因素具有很强的影响时,控制问题的复杂性就会增加。一旦任何可行的模型与现实,闭环分歧,即基于反馈,控制解决方案。从量子最佳控制方法的集合中,我们专注于穿着的切碎的随机基础算法与无梯度搜索相结合。此配对使我们能够应用带宽限制并限制优化参数的数量,从而简化了闭环应用程序。我们介绍了几种技术和修改,例如一种新的基础方法,可以使用“ RedCrab”软件包使用E FFI CIENT闭环控制。因此,我们在DI FF平台上为以下非常不同的目标进行了优化:灵敏度,超极化,数字挤压和纠缠状态准备。所有四个目标直接或间接改善感应方法。增强浅氮 - 视口中心的敏感性为改善基于钻石的扫描探针磁力计提供了机会。诸如萘晶体之类的材料的过度极化有望实现更精确的癌细胞成像。原子干涉法用于检测重力场的最小变化。我们探索的数字水平状态可以进一步提高该灵敏度。最后,较大的纠缠状态是超过经典灵敏度极限的关键。我们通过优化创建了一个破纪录的20量纠缠状态。最终,这些结果表明了量子最佳控制如何互连并增加平台量子技术的兴起。
几乎所有光 - 互动的基本原因是空间和时间上的原子运动。为了提供类似电影的动力学访问,我们将电子显微镜与AttoSond激光技术统一。以这种方式,我们将现代电子束的令人敬畏的空间分辨率与光线周期[1]提供的壮观时间分辨率相结合。选定的结果将报告在超材料内的电场[2-3],爱因斯坦 - de-haas对原子维度的影响[4],相变的反应路径[5]和自由电子Qubit态的形成[6]。通过颠覆性成像技术实现了许多科学和技术的突破,我们的4D电子显微镜可能在原子维度上发挥了轻度相互作用的作用。