患有严重神经系统残疾但功能完好的儿童往往被困在自己的身体里,被剥夺了基本人权。脑机接口(BCI)是针对患有严重神经系统残疾患者的快速出现的解决方案,但儿童几乎完全被这一进步所忽视。世界卫生组织估计,中度至重度神经系统残疾影响着超过 1 亿儿童。1 四肢瘫痪性脑瘫(CP)是主要的例子,这是一种由于生命早期的脑部疾病导致的身体运动永久性残疾。受影响的儿童通常无法走路、使用双手或说话,甚至无法完成简单的任务。许多儿童具有很强的存在意识,可能智力正常或有天赋。这些孩子实际上被困在自己的身体里,类似于成人中所描述的闭锁综合症。同样重要的是四肢瘫痪和智力障碍的儿童,他们与世界联系的选择往往有限,从而失去了参与生活的机会。总的来说,四肢瘫痪的青少年往往被剥夺了交流、社交、学习、玩耍和表达自己的基本人权。脑机接口是一种潜在的解决方案,它可以非侵入性地检测大脑活动,以解读用户控制设备的意图。2 闭锁综合症患者可能会使用 BCI 来驾驶轮椅、发送短信、玩视频游戏或仅用他们的思想创作歌曲。通过强大的学术联盟,可植入的 BCI 系统已为严重残疾的成年人带来了改变生活的应用。 3 具有巨大容量的无线可植入传感器即将问世。尽管取得了这些进展,但还没有一个孩子被植入 BCI 设备。脑机接口技术发展迅速,但儿科人群却被忽视了。2023 年 2 月的 ApubMedsearch 发现了 9400 多篇关于 BCI 的文章,但只有不到 2% 提到了儿童。ClinicalTrials.gov 上注册的儿科 BCI 试验数量也同样稀少。与此形成鲜明对比的是,联合国《残疾人权利公约》4 和《儿童权利公约》5 特别优先考虑新技术,以改善残疾儿童的生活。照顾严重残疾人的从业者大多不知道 BCI,但却认可其巨大的潜力。6
尽管越来越多的患者患有大麻疾病的患者自我治疗,但有关基于大麻的药物在精神病学中的疗效和安全性的当前知识仍然非常有限。到目前为止,尚未批准基于大麻的成品用于治疗精神疾病。越来越多的证据表明,大麻素可以改善自闭症谱系障碍(ASD),图雷特综合征(TS),焦虑症和创伤后应激障碍(PTSD)的症状。根据调查,患者经常使用大麻素来改善注意力不足/多动症(ADHD)的情绪,睡眠和症状。有证据表明,四氢大麻酚(THC)和含THC的大麻提取物(例如nabiximols)可以用作大麻使用障碍患者的替代品。初步证据还表明,核诺碱系统(ECS)参与了TS,ADHD和PTSD的病理生理学。由于EC是大脑中最重要的神经调节系统,因此它可能通过改变其他神经递质系统的改变会引起大麻素的有益作用。最后,EC是一个重要的压力管理系统。因此,大麻素可以通过减轻压力来改善精神疾病患者的症状。 实际上,对精神疾病患者的基于大麻的治疗与其他适应症没有差异。 含THC的产物的启动剂量应低(1-2.5 mg THC/天),并且应缓慢上滴剂量(每3-5天每3-5天)上滴剂量缓慢地吐出。 平均每日剂量为10-20 mg THC。因此,大麻素可以通过减轻压力来改善精神疾病患者的症状。实际上,对精神疾病患者的基于大麻的治疗与其他适应症没有差异。含THC的产物的启动剂量应低(1-2.5 mg THC/天),并且应缓慢上滴剂量(每3-5天每3-5天)上滴剂量缓慢地吐出。平均每日剂量为10-20 mg THC。相比之下,大麻二醇(CBD)主要用于高剂量> 400 mg/天。
学习目标:参加这项活动后,学习者应该更好地:•讨论和概述月经周期对女性心理健康摘要的一般和重叠影响:越来越多的研究表明了月经周期 - 精神病症状的依赖性波动;因此,这些波动可以被视为普遍现象。这些波动的可能机制是行为,心理和神经内分泌的影响。最近的评论记录了症状的循环加剧,并在特定且通常是单一疾病的背景下探索了这些机制。但是,问题仍然是月经周期对女性心理健康的一般和重叠影响。为了解决这一差距,我们综合了研究成人女性月经周期中各种精神症状加剧的文献。的结果表明,经前阶段和月经阶段在经诊断症状加剧中最一致地表明。具体来说,有力的证据表明,在这些阶段,精神病,躁狂,抑郁,自杀/自杀企图和饮酒的增加。焦虑,压力和暴饮暴食似乎在整个黄体阶段都更加普遍。在黄体期使用吸烟和可卡因的主观影响减少,但可用于其他物质的数据较少。对于恐慌症,创伤后应激障碍和边缘性人格障碍的症状证明了较少一致的模式,并且由于数据有限,因此很难得出有关广义焦虑症,社交焦虑症,强迫症和trichotil-lomania的症状的结论。 未来的研究应着重于开发标准化方法来识别月经周期阶段,并适应药理学和行为干预措施,以管理整个月经周期的精神症状波动。对于恐慌症,创伤后应激障碍和边缘性人格障碍的症状证明了较少一致的模式,并且由于数据有限,因此很难得出有关广义焦虑症,社交焦虑症,强迫症和trichotil-lomania的症状的结论。未来的研究应着重于开发标准化方法来识别月经周期阶段,并适应药理学和行为干预措施,以管理整个月经周期的精神症状波动。
在健康人类志愿者中评估了经颅聚焦超声 (FUS) 刺激初级躯体感觉皮层及其丘脑投射(即腹后外侧核)对脑电图 (EEG) 反应产生的影响。刺激与非惯用手相对应的单侧躯体感觉回路会在所有参与者中产生脑电图诱发电位;然而,并非所有感知到的刺激都会产生手的触觉。这些 FUS 诱发的脑电图电位 (FEP) 是从两个大脑半球观察到的,与正中神经刺激的躯体感觉诱发电位 (SSEP) 有相似之处。与使用 1 和 2 毫秒 PD 相比,使用 0.5 毫秒脉冲持续时间 (PD) 超声处理(占空比为 70%)可在超声处理同侧半球引发更明显的 FEP 峰值特征。尽管一些参与者报告听到了与 FUS 刺激相关的音调,但根据对音调刺激(模仿与 FUS 刺激相同的重复频率)的听觉诱发电位 (AEP) 的单独测量,观察到的 FEP 不太可能与听觉混淆。与丘脑刺激相关的静息态功能连接 (FC) 的离线变化表明,FUS 刺激增强了感觉运动和感觉整合区域网络的连接,这种变化至少持续一个多小时。临床神经学评估、EEG 和神经解剖 MRI 未发现超声处理的任何不良或意外影响,证明了其安全性。这些结果表明,FUS 刺激可能在人类体内诱导长期神经可塑性,表明其对各种神经和神经精神疾病具有神经治疗潜力。
在美国,成人和儿童患者使用的处方药数量持续大幅增加。处方药、非法药物以及家中存放的非药物产品(例如清洁产品、化妆品和杀虫剂)可能对儿童患者构成风险,导致意外和无人监督的接触(即吞咽、咀嚼药片/薄膜、吸入、接触皮肤或眼睛以及注射)。儿童患者,特别是幼儿,由于他们的口腔行为和模仿成人行为的倾向,也面临接触风险。家庭和临床环境中的药物剂量错误也可能导致治疗错误,从而产生不良反应或需要额外监测。儿童人群中使用的基于体重的处方药和基于年龄的非处方药剂量策略可能导致许多无意的错误,这些错误通常会报告给毒物控制中心 (PCC)(Schillie 2009)。这些错误类型包括服药/给药剂量错误;两次或间隔太短;给药途径、剂型或浓度不正确;以及配药杯错误(例如,计量单位错误,给药剂量相当于整个杯子的大小)。此外,青少年可能会滥用药物(例如右美沙芬)来获得欣快感(Schwartz 2005),因参与社交媒体上发布的误导性挑战而出现意外毒性(例如“肉桂挑战”)(Grant-Alfieri 2013),或故意使用药物作为自残的形式(Gilley 2020)。根据 2020 年国家毒物数据系统报告,5 岁以下儿童占所有人类报告毒物暴露的 42% 左右,其中包括儿童、青少年和成人
背景和目的:糖尿病与抑郁和焦虑密切相关。随着 2019 年冠状病毒病 (COVID-19) 大流行,普通人群中精神健康问题的患病率似乎正在迅速上升 (1)。因此,我们评估了 COVID-19 大流行封锁阶段儿童 1 型糖尿病 (T1D) 患者及其护理人员的心理健康状况。我们的目标是将 T1D 青少年及其护理人员的抑郁和焦虑水平与健康对照组进行比较。我们假设在 COVID-19 大流行期间,T1D 青少年的抑郁和焦虑水平会高于健康对照组(目标 1)。我们还探讨了 T1D 患者抑郁/焦虑增加的潜在原因(目标 2)。我们旨在进一步了解 COVID-19 大流行期间 T1D 患者的社会心理健康状况,并确定在全球危机中支持这一人群的机制。方法:田纳西州居家隔离令开始一周后,我们进行了 15 分钟的电话调查,以筛查 1 型糖尿病儿童家庭(n=100,儿童平均年龄=13.8 岁,平均糖化血红蛋白=8.95%,种族=高加索人(55%)/非裔美国人(43%))和健康儿童(儿童平均年龄=5.7 岁,种族=高加索人(24%)/非裔美国人(69%))的焦虑和抑郁症状况。通过标准评估工具患者健康问卷 (PHQ-4) 评估抑郁和焦虑情况,这是一份 4 项清单,采用 4 点李克特量表评分,可简要评估抑郁和焦虑。根据 1 型糖尿病状态使用卡方检验或 t 检验(视情况而定)比较焦虑/抑郁相关变量。使用调整了潜在混杂因素的逻辑回归检查 1 型糖尿病与焦虑和抑郁风险之间的关联。对于患有 1 型糖尿病 (T1D) 的家庭,我们提出了额外的问题,以确定与 1 型糖尿病护理相关的具体问题。结果:与对照组相比,在多变量调整模型中,1 型糖尿病患者的焦虑风险高出 5 倍,OR=5.02(95% 置信区间:1.83,14.84),P=0.002。此外,52 个 1 型糖尿病 (T1D) 家庭中有 26 个(50%)非常担心自己因 1 型糖尿病而面临更高的严重 COVID-19 感染风险,52 个 1 型糖尿病 (T1D) 家庭中有 14 个(27%)担心无法获得胰岛素和糖尿病用品。结论:在 COVID-19 大流行的急性期,儿童 1 型糖尿病 (T1D) 与焦虑风险增加有关,但与抑郁无关。COVID-19 大流行期间 1 型糖尿病患者焦虑情绪升高
引言维生素B12,也称为钴胺素,是水溶性维生素之一。Cobalamin has a large variety of biological functions but above all it is essential for haemato poiesis and the development and functioning of the nervous system.它也会影响认知功能。维生素B12未在动物和植物生物中合成,细菌是其产生的原因。人类维生素B12的唯一来源是动物起源的食物[1]。表I中显示了针对单个组的建议每日摄入维生素B12的当前指南。The products richest in cobalamin are liver and kidneys (up to 100 µ g/100 g), but crustaceans, fish and meat also provide large amounts of cobalamin.鸡蛋,奶酪和牛奶含有相对较少的钴胺(6 µg/L)。维生素B12主要存储在肝脏中。从20%到90%的动物食品中,维生素B12的吸收不等。假定在胃功能正常的健康成年人中,这种维生素的约有50%是从饮食中吸收的。成人肝储存1-4毫克的成年肝储备平衡维生素B12脱落饮食几年[2]。相反,胎儿存储约。每天维生素的0.1–0.2 µg。 在生命的前六个星期中,在婴儿的血清钴胺素水平上看到了显着降低。 Moreover, infantile vitamin B12 body stores (which usually comprise about 25 µ g) may be much lower if the infant's mother is undernourished. 在Paedi雄性种群中,维生素B12缺乏症很少见。 本文每天维生素的0.1–0.2 µg。在生命的前六个星期中,在婴儿的血清钴胺素水平上看到了显着降低。Moreover, infantile vitamin B12 body stores (which usually comprise about 25 µ g) may be much lower if the infant's mother is undernourished.在Paedi雄性种群中,维生素B12缺乏症很少见。本文在钴胺素不足的原因中,饮食不足(饮食中的不足,饮食中的Min B12摄入量,素食饮食,素食饮食,营养不良,酒精中毒)主要突出显示,并且主要由胃肠道疾病和胃肠道疾病造成的吸收障碍,并由胃肠道疾病和遗传性疾病的替代性分发和植物性的vitemin BB12运输。胃原因包括城堡的内在因子缺乏,萎缩性胃病,Zollinger-Ellison综合征,质子泵抑制剂滥用,总或部分胃切除术。肠道原因包括腹腔疾病,克罗恩病,伊默隆德·格雷斯贝克综合征和寄生虫侵染(广泛的tape虫)[3]。它最常见的原因是食物不足,最脆弱的群体是由患有明显或潜在维生素B12缺乏症的母亲专门母乳喂养的婴儿[4]。
1型糖尿病(T1DM)通常在小儿患者中诊断出来。国际糖尿病联合会预测,2021年,T1DM的儿童和青少年(0-19岁)的全球人数约为120万,每年大约发现184,100例新病例[1]。此外,T1DM是塞尔维亚年轻人(0-19岁)中普遍的非感染性慢性疾病之一,显示出每100,000名个人的大量发病率为16.4。检查塞尔维亚共和国国家糖尿病登记局(塞尔维亚)已经公布了最近被诊断出的T1DM的Pedi-Atric患者的每年一次激增,尤其是在5-9岁的年龄组(每100,000个个人17.1)和10-14岁的年龄组中(每100,000个个人29.2个个人)[2] [2] [2]。在鉴定出新开发的T1DM的儿童中,孩子的日程安排和整个家庭动态都发生了变化。在此期间,基本因素成为父母的支持和参与,因为它在激励患者独立管理他们的护理程序并适应这种苛刻的情况带来的挑战中起着至关重要的作用。因此,年轻患者及其父母对拥抱和执行必不可少的自我保健任务的热情在塑造短期和长期健康结果方面具有巨大的意义[3]。发展中国家几乎没有关于儿科患者的自我保健活动的数据,而且似乎在开发国家以外的儿童和青少年中尚未对这一概念进行彻底的研究。在目前可访问的文献中可以找到自我保健的不同定义[4,5]。由于一般福祉的广泛观点而不是狭窄的疾病自我管理和预防,因此自我保健的概念是由Kickbush [6]定义为融合的三个维度:心理社会生活,一般健康,对疾病需求的反应。从健康促进的角度来看,支持自我保健(独立或在父母援助方面)需要改善患有慢性疾病的儿童和青少年的一般福祉和生活质量。在小儿环境中,患有T1DM的儿童和青少年具有复杂的医疗和发育需求,这尤其重要[4]。在我们的研究框架内,“自我保健可以定义为执行有关诊断为T1DM的儿童的福祉和健康的基本任务”。这些任务是由儿科患者本身或在父母或监护人的协助下自主淘汰的,尤其是在孩子的能力不足的情况下[4]。Chieng及其同事[5]推测,小儿T1DM患者之间的自我保健程度与他们的发育阶段和年代年龄紧密相连。此外,T1DM与多种风险和600多个复杂的职责相关,这些责任对这种慢性疾病的有效管理不利[7]。这些责任不仅涵盖了维持血糖水平至关重要的身体事业,而且还包括对患有慢性病的表情适应[8]。方案依从性涵盖了患者遵守其医疗保健从业者提供的指南的程度[9]。在小儿T1DM患者的背景下,粘附
4。Parkkola A,Harkonen T,Ryhanen SJ,Ilonen J,Knip M. Finnish Pedi-Atric糖尿病R. 1型糖尿病和Phe notype and Phe-notype and Phe-notype and Phe-Notype和New Semain-New Sairnation-type的家族史。糖尿病护理。2013; 36(2):348-354。 5。 Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 36(2):348-354。5。Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。Ziegler AG,Danne T,Dunger DB等。主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。mol代谢。2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 5(4):255-262。6。Ziegler AG,Rewers M,Simell O等。血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。JAMA。2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 309(23):2473-2479。7。Krischer JP,Lynch KF,Schatz DA等。遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。糖尿病学。2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2015; 58(5):980-987。8。Bingley PJ,Boulware DC,Krischer JP。自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。糖尿病学。2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 59(3):542-549。9。Anand V,Li Y,Liu B等。胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。2021; 44(10):2269-2276。10。Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。nat。基因。11。精细模拟,跨乳液和基因组分析确定了1型糖尿病的因果变异,细胞,基因和药物靶标。2021; 53(7):962-971。Lambert AP,Gillespie KM,Thomson G等。 人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。 J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。Lambert AP,Gillespie KM,Thomson G等。人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Clin。内分泌。METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。METAB。2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2004; 89(8):4037-4043。12。nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。糖尿病。2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2013; 62(6):2135-2140。13。Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。am。J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Hum。基因。1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。1996; 59(5):1134-1148。14。Erlich H,Valdes AM,Noble J等。HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。糖尿病。2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2008; 57(4):1084-1092。15。Hippich M,Beyerlein A,Hagopian WA等。对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。糖尿病。2019; 68(4):847-857。16。Bonifacio E,Beyerlein A,Hippich M等。plos med。2018; 15(4):E1002548。 17。 proc。 natl。2018; 15(4):E1002548。17。proc。natl。遗传评分以分层发展多种胰岛自身抗体和1型糖尿病的风险:对儿童的前瞻性研究。Aly TA,IDE A,Jahromi MM等。 1A型糖尿病的极端遗传风险。 学院。 SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。Aly TA,IDE A,Jahromi MM等。1A型糖尿病的极端遗传风险。学院。SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。SCI。U. S. A.2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2006; 103(38):14074-14079。18。Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J.对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。丹麦糖尿病研究小组。糖尿病学。1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。1993; 36(9):870-875。19。Sharp SA,Rich SS,Wood AR等。改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。糖尿病护理。2019; 42(2):200-207。20。Winkler C,Krumsiek J,Buettner F等。1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。糖尿病学。2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2014; 57(12):2521-2529。21。Bonifacio E,Weiss A,Winkler C等。与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。糖尿病护理。2021; 44:2260-2268。