耐甲氧西林金黄色葡萄球菌(MRSA)在医院中造成了明显的病态和死亡率。MRSA的快速,准确的风险地层对于优化抗生素治疗至关重要。我们的研究介绍了一个深度学习模型Pytorch_EHR,该模型利用电子健康记录(EHR)时间序列数据,包括广泛的患者特定数据,以预测两周内MRSA的阳性。8,164 MRSA和22,393例来自德克萨斯州休斯敦市纪念馆Hermann医院系统的非MRSA患者事件用于模型开发。 Pytorch_EHR优于准确性(AUROC PYTORCH_EHR = 0.911,AUROC LR = 0.857,AUROC LROC LR = 0.892),均优于逻辑回归(LR)和光梯度增压机(LGBM)模型。 外部验证来自医学信息MART的393,713例患者事件(MIMIC)-IV数据集(IV)在波士顿的IV数据集证实其优异的准确性(Auroc Pytorch_ehr = 0.859,Auroc LR = 0.816,Auroc LRR = 0.816,AUROC LGBM = 0.838)。 我们的模型有效地将患者分为高,中和低风险类别,可能优化抗微生物疗法,并减少不必要的MRSA特异性抗菌药物。 这突出了深度学习模型在预测MRSA阳性文化,超越传统机器学习模型和支持临床医生的判断方面的优势。8,164 MRSA和22,393例来自德克萨斯州休斯敦市纪念馆Hermann医院系统的非MRSA患者事件用于模型开发。Pytorch_EHR优于准确性(AUROC PYTORCH_EHR = 0.911,AUROC LR = 0.857,AUROC LROC LR = 0.892),均优于逻辑回归(LR)和光梯度增压机(LGBM)模型。外部验证来自医学信息MART的393,713例患者事件(MIMIC)-IV数据集(IV)在波士顿的IV数据集证实其优异的准确性(Auroc Pytorch_ehr = 0.859,Auroc LR = 0.816,Auroc LRR = 0.816,AUROC LGBM = 0.838)。我们的模型有效地将患者分为高,中和低风险类别,可能优化抗微生物疗法,并减少不必要的MRSA特异性抗菌药物。这突出了深度学习模型在预测MRSA阳性文化,超越传统机器学习模型和支持临床医生的判断方面的优势。
结果:包括577名患者的注释图像。对来自338名患者的数据(平均n = 10,253个标记图像)的数据进行了培训,对119名患者进行了验证(平均n = 3,505个标记的图像),并对120名患者的测试组(平均n = 3,511个标记的图像)进行了评估。用AUROC为0.96实现的全自动筛选。 网络可以区分明显的(无度,轻度至中度)与明显的(中度或重度),而AUROC为0.86,早期(轻度或轻度至中度至中度)和显着(中度或重度),而AUROC为0.75。 在8,502个门诊经胸膜超声心动图的队列中对这些网络的外部验证表明,仅使用parasternal的长轴成像仅用AUROC进行0.91的筛查,可以实现AS筛选。用AUROC为0.96实现的全自动筛选。网络可以区分明显的(无度,轻度至中度)与明显的(中度或重度),而AUROC为0.86,早期(轻度或轻度至中度至中度)和显着(中度或重度),而AUROC为0.75。在8,502个门诊经胸膜超声心动图的队列中对这些网络的外部验证表明,仅使用parasternal的长轴成像仅用AUROC进行0.91的筛查,可以实现AS筛选。
结果:训练队列包括 92 377 个心电图-超声心动图对(46 261 名患者;中位年龄 8.2 岁)。测试组包括内部测试(12 631 名患者;中位年龄 8.8 岁;4.6% 综合结果)、急诊科(2 830 名患者;中位年龄 7.7 岁;10.0% 综合结果)和外部验证(5 088 名患者;中位年龄 4.3 岁;6.1% 综合结果)队列。内部测试和急诊科队列的模型性能相似,模型对左心室肥大的预测优于儿科心脏病专家基准。在模型中添加年龄和性别不会给模型性能带来任何好处。使用定量结果截止值时,内部测试(综合结果:AUROC,0.88,AUPRC,0.43;左心室功能障碍:AUROC,0.92,AUPRC,0.23;左心室肥大:AUROC,0.88,AUPRC,0.28;左心室扩张:AUROC,0.91,AUPRC,0.47)和外部验证(综合结果:AUROC,0.86,AUPRC,0.39;左心室功能障碍:AUROC,0.94,AUPRC,0.32;左心室肥大:AUROC,0.84,AUPRC,0.25;左心室扩张:AUROC,0.87,AUPRC,0.33)之间的模型性能相似,综合结果阴性预测值分别为 99.0% 和 99.2%。显着性映射突出显示了影响模型预测的 ECG 成分(所有结果的心前区 QRS 波群;LV 功能障碍的 T 波)。高风险 ECG 特征包括横向 T 波倒置(LV 功能障碍)、V1 和 V2 中的深 S 波和 V6 中的高 R 波(LV 肥大)以及 V4 至 V6 中的高 R 波(LV 扩张)。
背景:与机器学习集成(ML)集成的量子计算在包括医疗保健在内的各个领域都提供了新颖的解决方案。分类中量子计算与ML之间的协同作用利用了唯一的数据模式。尽管有理论的优势,但量子计算在小型医学数据集上的经验应用和有效性仍未得到充分影响。方法:这项来自高等医院的回顾性研究使用了有关早期结直肠癌的数据,从2008年到2020年,具有93个特征和1501例患者,以预测死亡率。我们将量子支持向量机(QSVM)模型与经典的SVM模型进行了比较,就特征数量,训练集数量和结果比进行了比较。我们根据接收器操作特征曲线(AUROC)中曲线下的区域(AUROC)评估了模型。结果:我们观察到死亡率为7.6%(1253名受试者中的96个)。我们使用11个临床变量(包括癌症阶段和化学疗法史)生成了死亡率预测模型。我们发现,常规方法和量子方法之间的AUROC差异是前11个变量的最大值。我们还显示了QSVM中的AUROC(平均[标准偏差],0.863 [0.102])的表现优于常规SVM中的所有试验次数(0.723 [0.231])。与常规SVM相比,QSVM即使在不平衡的情况下,QSVM也与AUROC一致。结论:我们的研究强调了量子计算改善医疗保健中预测性建模的潜力,尤其是对于有限的可用数据的稀有疾病。与常规方法相比,量子计算的优势,例如希尔伯特空间的探索,促进了优越的预测性能。
超声是检测和鉴定乳腺癌的重要成像方式。尽管乳腺超声一直被证明可以检测出乳房 X 线摄影中隐藏的癌症,尤其是在乳房致密的女性中,但人们注意到乳腺超声具有很高的假阳性率。在这项研究中,我们提出了一种人工智能 (AI) 系统,该系统在超声图像中识别乳腺癌的准确度达到放射科医生的水平。为了开发和验证这个系统,我们整理了一个数据集,该数据集包含 2012 年至 2019 年间在纽约大学朗格尼健康中心接受检查的 143,203 名患者的 288,767 次超声检查。在由 44,755 次检查组成的测试集中,AI 系统的受试者工作特征曲线下面积 (AUROC) 达到 0.976。在一项读者研究中,AI 系统的 AUROC 高于十位获得委员会认证的乳腺放射科医生的平均水平(AUROC:AI 0.962,放射科医生 0.924 ± 0.02)。在 AI 的帮助下,放射科医生将假阳性率降低了 37.4%,并将要求的活检数量减少了 27.8%,同时保持了相同的敏感度水平。为了确认其通用性,我们在独立的外部测试数据集上对我们的系统进行了评估,结果显示其 AUROC 为 0.911。这凸显了 AI 在提高全球乳腺超声诊断的准确性、一致性和效率方面的潜力。
背景:早期并发症会增加肠道梗阻手术后的院内住院和死亡率。重要的是要确定足够早期肠梗阻患者的术后早期并发症的风险,这将允许进行先发制化的个性化增强治疗,以改善肠梗阻患者的预后。基于机器学习的风险预测模型有助于早期诊断和及时干预。目的:本研究旨在根据机器学习算法在肠道梗阻手术后的患者早期并发症构建在线风险计算器。方法:从2013年4月至2021年4月,共有396例接受肠梗阻手术的患者在一个独立的医疗中心被录取为培训队列。总体而言,使用了7种机器学习方法来建立预测模型,其性能通过接收器操作特征曲线(AUROC),准确性,灵敏度,特异性和F 1 -SCORE评估。最佳模型通过2个独立的医疗中心进行了验证,这是一个公开可用的围手术期数据集,该数据集信息丰富的外科手术患者数据集(INSPIRE)以及由上述3个数据集组成的混合队列,分别涉及50、66、48和164例。Shapley添加性解释是测量的,以识别危险因素。我们可视化随机森林模型,并创建了一个基于Web的在线风险计算器。结果:训练队列中术后并发症的发生率为47.44%(176/371),而4个外部验证队列中的发病率为34%(17/50),56.06%(37/66)(37/66),52.08%(25/48)和48.17%(48.17%(79/164),术后并发症与8个项目特征有关:死亡率和发病率枚举的生理严重程度评分(螺母生理评分),胶体输注的量,诱导麻醉前的休克索引,ASA(美国麻醉学会)分类,分类,中性粒细胞的毛茸茸的百分比,在毛茸茸的情况下,育龄和年龄,以及年龄,年龄,以及年龄,均为年龄。随机森林模型的总体表现最佳,AUROC为0.788(95%CI 0.709-0.869),准确性为0.756,灵敏度为0.695,特异性为0.810,F 1秒速度为0.727,为0.727。随机森林模型还达到了验证1中的0.755(95%CI 0.652-0.839),在验证1.817(95%CI 0.695-0.913)中,较高的AUROC在验证队列中,验证队列2,类似的AUROC,类似的AUROC(95%COH)(95%COH)(95%COH)。验证队列4。
医院相关感染 (HAI) 是医院中最常见的不良事件之一。我们在一项队列研究中使用人工智能 (AI) 算法进行感染监测。该模型正确检测出 73 名 HAI 患者中的 67 名。最终模型使用多层感知器神经网络,实现了 90.27% 的受试者工作曲线下面积 (AUROC);特异性为 78.86%;灵敏度为 88.57%。呼吸道感染的效果最好 (AUROC 93.47%)。AI 算法可以识别大多数 HAI。AI 是一种可行的 HAI 监测方法,具有节省时间、促进准确的全院监测和提高感染预防绩效的潜力。ª 2021 作者。由 Elsevier Ltd 代表医疗感染协会出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
这项工作通过开发具有二维(时频)卷积长期记忆(ConvlstM2D)的混合和尖峰形式的心脏异常检测,并具有封闭形式的连续(CFC)神经网络(SCCFC),这是一个是生物生物味的Sallow Sallow sallow sallow sallow sallow sallof netward。该模型在心脏异常检测中达到了F1分数,AUROC为0.82和0.91。这些结果可与非加速ConvlstM2D-CFC(CORVCFC)模型1相媲美。值得注意的是,SCCFC模型在模拟Loihi的神经形态芯片架构上的估计功率消耗显示出明显更高的能量效率,与ConverCFC模型在传统过程中的450 µ µ J/INF的消耗相比。另外,作为概念验证,我们在常规且相对受资源约束的Radxa零上部署了SCCFC模型,该模型配备了Amlogic S905Y2处理器进行验证培训,这导致了绩效证明。在常规GPU上对2个时期进行初步训练后,F1分别和AUROC分别从0.46和0.65和0.56和0.73提高,并在5个时期的室内训练训练中提高了5个。此外,当呈现新数据集时,SCCFC模型展示了可以构成伪观点测试的强样本外泛化功能,实现了F1分数,AUROC为0.71和0.86。峰值SCCFC在鲁棒性方面还表现出在推理过程中有效处理缺失的ECG通道方面的非加速Convcfc模型。该模型的功效扩展到单个铅心电图(ECG)分析,在这种情况下证明了合理的精度,而我们的工作重点一直放在模型的计算和记忆复杂性上。关键字:尖峰神经网络,心电图分析,能量效率,设备微调,生成,鲁棒性。
ALD . . . . . . . . . . . . . . . . . . 酒精性肝病 ALF . . . . . . . . . . . . . . . . . . . 急性肝衰竭 ALP . . . . . . . . . . . . . . . . . 碱性磷酸酶 ALT . . . . . . . . . . . . . . . . . . 丙氨酸氨基转移酶 ANN . . . . . . . . . . . . . . ....................................................人工神经网络 APACHE II.......................................................................................................................急性生理与慢性健康评估 II AST.......................................................................................................................................天冬氨酸转氨酶 AUROC.......................................................................................................................................接收者操作曲线下面积
背景:心脏手术相关的急性肾损伤(CSA-AKI)是儿科心脏手术后的主要并发症,这与发病率和死亡率的增加有关。手术前后对CSA-AKI的早期预测可以显着改善围手术期间的预防和治疗策略的实施。但是,关于如何识别CSA-AKI高风险的小儿患者的临床信息有限。目的:该研究旨在开发和验证机器学习模型,以预测儿科人群中CSA-AKI的发展。方法:这项回顾性队列研究招募了1个月至18岁的患者,他们在中国南部南大学的3个医学中心接受了心肺旁路手术。CSA-AKI是根据2012年肾脏疾病的定义:改善了全球结果标准。特征选择分别应用于2个数据集:术前数据集以及术前和术中数据集。测试了多个机器学习算法,包括K-Nearest邻居,天真的贝叶斯,支持向量机,随机森林,极端梯度增强(XGBoost)和神经网络。通过使用接收器操作特征曲线(AUROC)下的区域(AUROC),在交叉验证中确定了最佳性能模型。使用Shapley添加说明(SHAP)方法生成模型解释。结果:其中一个中心的3278名患者用于模型推导,而另外2个中心的585例患者用作外部验证队列。CSA-AKI发生在衍生队列中的564例(17.2%)中,外部验证队列中的51例(8.7%)患者发生。在考虑的机器学习模型中,XGBoost模型在交叉验证中实现了最佳的预测性能。仅使用术前变量的XGBoost模型的AUROC为0.890(95%CI 0.876-0.906),在外部验证队列中为0.857(95%CI 0.800-0.903)。包括术中变量时,AUROC分别增加到0.912(95%CI 0.899-0.924)和0.889(95%CI 0.844-0.920)。Shap方法表明,基线血清肌酐水平,灌注时间,身体长度,手术时间和术中失血是CSA-AKI的前5个预测因子。结论:可解释的XGBOOST模型为CSA-AKI的早期预测提供了实用的工具,CSA-AKI对于正在进行心脏手术的小儿患者的风险分层和围手术期管理非常有价值。