简介:SARS-CoV-2 感染的早期临床病程可能难以与入院时的其他未分化医疗表现区分开来,然而病毒特异性实时聚合酶链反应 (RT-PCR) 检测的敏感性有限,并且由于操作原因可能需要长达 48 小时。在本研究中,我们开发了两种早期检测模型来识别 COVID-19,使用在 115,394 例急诊就诊和 72,310 例入院病例中通常在一小时内可获得的常规收集数据 (实验室测试、血气和生命体征)。我们的急诊科 (ED) 模型对所有入院患者实现了 77.4% 的敏感性和 95.7% 的特异性 (AUROC 0.939),入院模型对入院子集实现了 77.4% 的敏感性和 94.8% 的特异性 (AUROC 0.940)。两种模型在各种患病率 (<5%) 中均实现了高阴性预测值 (>99%),有助于在分诊期间快速排除以指导感染控制。我们在两周的测试期内对所有就诊并入住英国大型教学医院集团的患者进行了前瞻性验证我们的模型,与 RT-PCR 结果相比,准确率分别为 92.3%(n=3,326,NPV:97.6%,AUROC:0.881)和 92.5%(n=1,715,NPV:97.7%,AUROC:0.871)。敏感性分析考虑了 PCR 阴性结果的不确定性,提高了表观准确率(95.1% 和 94.1%)和 NPV(99.0% 和 98.5%)。我们的人工智能模型可有效用作急诊科和医院入院部的 COVID-19 筛查测试,在无法快速检测的环境中发挥重要作用。摘要:背景:快速识别 COVID-19 对于迅速提供护理和保持感染控制非常重要。SARS-CoV- 2 感染的早期临床病程可能难以与医院中其他未分化的医疗表现区分开来,但是由于操作原因,SARS-CoV-2 PCR 检测可能需要长达 48 小时。使用常规收集的临床数据进行训练的人工智能 (AI) 方法可以在出现症状的第一个小时内进行 COVID-19 的门诊筛查。方法:从英国一家大型教学医院集团的急诊和急诊科的 170,510 次连续就诊中提取了人口统计学、常规和先前临床数据。我们应用多元逻辑回归、随机森林和极端梯度增强树来区分因 COVID-19 而导致的急诊科 (ED) 表现和入院情况与大流行前的对照。我们逐步添加临床特征集并使用分层 10 倍交叉验证评估性能。在训练过程中对模型进行了校准,以达到识别 COVID-19 患者的 70%、80% 和 90% 的灵敏度。为了模拟疫情不同阶段的真实表现,我们生成了具有不同 COVID-19 患病率的测试集并评估了预测值。我们对 2020 年 4 月 20 日至 5 月 6 日期间就诊或入院的所有患者进行了前瞻性模型验证,并将模型预测与 PCR 检测结果进行了比较。结果:115,394 例急诊就诊和 72,310 例入院的实验室血液检测、床旁血气和生命体征测量结果均符合预期。
抽象背景的早期诊断阿尔茨海默氏病(AD)和轻度认知障碍(MCI)仍然是神经病学的重要挑战,常规方法通常受到解释的主观性和可变性的限制。将深度学习与磁共振成像(MRI)分析中的人工智能(AI)相结合,作为一种变革性方法,为无偏见的,高度准确的诊断见解提供了潜力。客观一项荟萃分析旨在分析AD和MCI模型中MRI图像深度学习的诊断准确性。方法在PubMed,Embase和Cochrane库数据库中进行了荟萃分析,该数据库是针对系统评价和荟萃分析(PRISMA)指南的首选报告项目,重点介绍了深度学习的诊断准确性。随后,使用Quadas-2清单评估了方法论质量。诊断措施,包括灵敏度,特异性,似然比,诊断赔率和接收器操作特征曲线下的面积(AUROC),以及用于T1加权和非T1加权MRI的亚组分析。结果总共确定了18个合格的研究。Spearman相关系数为-0.6506。荟萃分析表明,敏感性和特异性,阳性似然比,阴性可能比率和诊断优势比分别为0.84、0.86、6.0、0.19和32。AUROC为0.92。接收器操作特征(HSROC)的层次结构摘要
缩写:AST,天冬氨酸转氨酶;AUROC,受试者工作特征曲线下面积;BMI,身体质量指数;CK-18,细胞角蛋白-18;FAST,Fibroscan-AST;FIB-4,纤维化-4指数;GBM,梯度增强机;HOMA,稳态模型评估;MASH,代谢功能障碍相关脂肪性肝炎;MAST,MRI-AST;MEFIB,MRE 联合 FIB-4;MRE,磁共振弹性成像;MRI,磁共振成像;NASH,非酒精性脂肪性肝炎;VCTE,振动控制瞬时弹性成像。
使用人工智能辅助图像分类器对初级内镜医师进行胃病变组织学预测培训的初步效果。方法 在具有五个卷积层和三个完全连接层的卷积神经网络上构建人工智能图像分类器,通过 2,000 个未放大的内镜胃图像训练 Resnet 主干。独立验证集由来自 100 个胃病变的另外 1,000 个内镜图像组成。六名初级内镜医师审查了验证集的第一部分,然后向其中三名(A 组)披露人工智能的预测,而其余三名(B 组)未提供此信息。所有内镜医师都独立审查了验证集的第二部分。结果 AI 的总体准确率为 91.0 %(95 % CI:89.2 – 92.7 %),敏感度为 97.1 %(95 % CI:95.6 – 98.7 %),特异度为 85.9 %(95 % CI:83.0 – 88.4 %),ROC 曲线下面积 (AUROC) 为 0.91(95 % CI:0.89 – 0.93)。在两个验证集中,AI 的准确度和 AUROC 均优于所有初级内镜医师。在第二个验证集中,A 组内镜医师的表现有所提高,但 B 组内镜医师没有提高(准确度为 69.3 % 到 74.7 %;P = 0.003)。结论 训练后的 AI 图像分类器可以准确预测胃病变中是否存在肿瘤成分。人工智能图像分类器的反馈还可以加快初级内窥镜医师预测胃病变组织学的学习曲线。
摘要。目的:儿科重症监护病房 (PICU) 收治的危重儿童中,癫痫发作较为常见,因此是识别和治疗的重要目标。大多数癫痫发作没有明显的临床表现,但仍对发病率和死亡率有重大影响。PICU 内被认为有癫痫发作风险的儿童使用连续脑电图 (cEEG) 进行监测。cEEG 监测成本相当高,而且由于可用的机器数量始终有限,临床医生需要根据感知风险对患者进行分类以分配资源。本研究旨在开发一种计算机辅助工具,以改善危重儿童癫痫发作风险评估,使用 PICU 中普遍记录的信号,即心电图 (ECG)。方法:基于从第一个小时的心电图记录中提取的特征和患者的临床数据,以患者为单位开发了一种新型数据驱动模型。主要结果:最具预测性的特征是患者的年龄、脑损伤作为昏迷病因和 QRS 面积。对于没有任何先前临床数据的患者,使用一小时的心电图记录,随机森林分类器的分类性能达到受试者工作特征曲线下面积 (AUROC) 评分 0.84。当将心电图特征与患者临床病史相结合时,AUROC 达到 0.87。意义:以真实的临床场景为例,我们估计我们的临床决策支持分类工具可以将阳性预测值提高到临床标准的 59% 以上。
摘要目标研究表明,通用心血管风险(CVR)预测工具可能会低估SLE中的CVR。我们首次检查了我们的知识,通用和适应疾病的CVR评分是否可以预测SLE中亚临床动脉粥样硬化的进展。方法,我们包括所有没有心血管事件病史或糖尿病病史的符合条件的SLE患者,他们进行了3年的颈动脉和股骨超声随访检查。五个通用(系统的冠状动脉风险评估(得分),弗雷明汉姆风险评分(FRS),汇总队列风险方程,球虫,前瞻性心血管穆斯特)和三个“ SLE-SLE适应” CVR评分(修改的系统性冠状动脉风险评估(MSCORE),修改后的风险评分(MSSCORE)风险评分(MMSCERS),QRAMINGHAM WASER(MMFRS),QUSER(MMFRS),QESERS QUSERS),QESERS QUSER SERKS),QESERS QUSER SECRES(QESERS)QUSER SERKS)在基线时计算。用Brier评分(BS),接收器操作特征曲线(AUROC)和Matthews相关系数(MCC)测试了CVR评分预测动脉粥样硬化进展(定义为新的动脉粥样硬化斑块发育)的性能(定义为新的动脉粥样硬化斑块发育),而与Harrell的CREALATION一起测试了Harrell的C -CORLAITION(MCC)。二进制逻辑回归也用于检查亚临床动脉粥样硬化进展的决定因素。结果在124名患者中有26名(21%)(女性90%,平均年龄44.4±11。7年)在平均39.7±3.8个月的随访期之后,出现了新的动脉粥样硬化斑块。性能分析表明,MFRS(BS 0.14,AUROC 0.80,MCC 0.22)和QRISK3(BS 0.16,AUROC 0.75,MCC 0.25)更好地预测了斑块进展。c-索引对MFRS和QRISK3的歧视没有优势。在多变量分析中,qrisk3(OR 4.24,95%CI 1.30至13.78,p = 0.016)在CVR预测评分和年龄中(OR 1.13,95%CI 1.06至1.21,p <0.001),累积糖皮质激素剂量(OR累积糖皮质激素剂量)抗磷脂抗体(OR 3.66,95%CI 1.24至10.80,p = 0.019)在疾病相关的CVR因子中与斑块进展独立相关。结论适用于SLE适应的CVR评分,例如QRisk3或MFRS,以及监测糖皮质激素暴露和抗磷脂抗体的存在,可以帮助改善SLE中的CVR评估和管理。
结果:本研究中使用的最终数据集由1,048,422例使用参与者的年度健康检查记录,包括肾衰竭患者(n = 13,156 [1.27%])。表现最佳的模型是双重组件,其中包括所有功能,不包括年龄,包括脊回归和LightGBM组成,AUROC为0.754,精度为0.693,特异性为0.693,敏感性为0.691,敏感性为0.691,测试数据集对0.692的精度平衡。最后,预测肾衰竭的五个最重要特征是年龄,体重指数,空腹血糖,舒张压和收缩压。
5自动化学校,Banasthali Vidyapith,拉贾斯坦邦,印度304022。 电子邮件:ppathak9999999999999999999999999999999. 重大的气候变化是一项非常困难的任务,会影响全世界的人们。 降雨被认为是天气系统中最重要的现象之一,其速率是最关键的变量之一。 要通过标准方法开发预测模型,气象专家试图检测大气属性,例如阳光,温度,湿度和浑浊等。 机器学习(ML)技术最近进化得更具进化,它提供的结果比传统方法更令人满意,并且易于使用。 本文介绍了ML分类器,例如Logistic回归(LR),决策树(DT),随机森林(RF),轻梯度增压机(LGBM),CAT Boost(CB)和Extreme Grantient Boost(XGB),以使用功能工程框架来预测降雨。 采用接收器操作特征(AUROC)曲线和其他统计指标(例如回忆,准确性,精度和Cohen Kappa)的区域来预测和比较上述方法的成功率。 根据AUROC值的验证结果为XGB(0.94)> CB(0.93)> LGBM(0.87)> RF(0.93)> dt(0.88)> lr(0.78)。 最终,XGB模型在统计参数方面优于其他模型。 关键字:二进制分类,超级参数调整,机器学习,XGB分类器,天气预报。 1。 [6]。5自动化学校,Banasthali Vidyapith,拉贾斯坦邦,印度304022。电子邮件:ppathak9999999999999999999999999999999. 重大的气候变化是一项非常困难的任务,会影响全世界的人们。 降雨被认为是天气系统中最重要的现象之一,其速率是最关键的变量之一。 要通过标准方法开发预测模型,气象专家试图检测大气属性,例如阳光,温度,湿度和浑浊等。 机器学习(ML)技术最近进化得更具进化,它提供的结果比传统方法更令人满意,并且易于使用。 本文介绍了ML分类器,例如Logistic回归(LR),决策树(DT),随机森林(RF),轻梯度增压机(LGBM),CAT Boost(CB)和Extreme Grantient Boost(XGB),以使用功能工程框架来预测降雨。 采用接收器操作特征(AUROC)曲线和其他统计指标(例如回忆,准确性,精度和Cohen Kappa)的区域来预测和比较上述方法的成功率。 根据AUROC值的验证结果为XGB(0.94)> CB(0.93)> LGBM(0.87)> RF(0.93)> dt(0.88)> lr(0.78)。 最终,XGB模型在统计参数方面优于其他模型。 关键字:二进制分类,超级参数调整,机器学习,XGB分类器,天气预报。 1。 [6]。电子邮件:ppathak9999999999999999999999999999999.重大的气候变化是一项非常困难的任务,会影响全世界的人们。降雨被认为是天气系统中最重要的现象之一,其速率是最关键的变量之一。要通过标准方法开发预测模型,气象专家试图检测大气属性,例如阳光,温度,湿度和浑浊等。机器学习(ML)技术最近进化得更具进化,它提供的结果比传统方法更令人满意,并且易于使用。本文介绍了ML分类器,例如Logistic回归(LR),决策树(DT),随机森林(RF),轻梯度增压机(LGBM),CAT Boost(CB)和Extreme Grantient Boost(XGB),以使用功能工程框架来预测降雨。采用接收器操作特征(AUROC)曲线和其他统计指标(例如回忆,准确性,精度和Cohen Kappa)的区域来预测和比较上述方法的成功率。根据AUROC值的验证结果为XGB(0.94)> CB(0.93)> LGBM(0.87)> RF(0.93)> dt(0.88)> lr(0.78)。最终,XGB模型在统计参数方面优于其他模型。关键字:二进制分类,超级参数调整,机器学习,XGB分类器,天气预报。1。[6]。引言大多数行业,例如生物学,建构,运输和农业都受到不利天气条件(例如洪水,降雨,干旱等)的影响,从而使天气预报是必要的要求。防止农业和财务损失的最具挑战性的解决方案之一是天气预报。天气预报始于19世纪后期,随后在[1,2]中划定了天气预报行动的进展。在过去,气象学家用来根据其专业知识来估算天气参数,但现在该过程涉及应用技术和数据[3]。常规数据管理方法尚未被证明有效或有效地处理大数据[4,5]。事实上,世界各地的不可预测的天气模式必须通过使用不同的大气属性(例如湿度,压力,温度和风速等)来开发一种新的预测技术。传统上,预测是通过人类努力来完成的,但是今天,它是由需要使用高质量设备的巨大计算方法来控制的[7,8]。尽管使用卫星知识和超级计算机使用先进的技术来适应数据,但预后剂仍然对季风的变化感到困惑,这使得对数据的智能解释和分析变得困难。在现实世界中的应用中,例如医学诊断,语音和模式识别,自然语言处理,以及在某些可再生能源应用中,例如太阳照射,生物能源和风速预测机器学习(ML)算法利用计算方法来从历史数据和提取相关特征中获得所需的信息来增强预测输出[9-10]。
供体衍生的无细胞DNA(DD-CFDNA)已成为检测移植排斥反应的有前途的生物标志物。这项研究旨在评估将其应用于肾脏移植排斥的诊断准确性和临床价值。从PubMed,Embase,Cochrane Library和Web of Science数据库中审查了有关肾脏移植拒绝中DD-CFDNA诊断的相关文献。数据和研究特征由两名研究人员独立提取。分别分析了任何排斥(AR)和抗体介导的排斥反应(ABMR)的诊断精度数据。潜在的异质性。漏斗图用于阐明出版偏见的存在或不存在。九本出版物提供了有关诊断AR患者的DD-CFDNA准确性的数据。具有95%置信区间(CIS)的接收器操作特征(AUROC)曲线下的汇总敏感性,特异性和面积为0.59(95%CI,0.48 - 0.69),0.83(95%CI,0.76 - 0.88)和0.80(95%CI,0.80(95%CI,0.76 - 0.76 - 0.83)。此外,12项研究集中在ABMR的DD-CFDNA的诊断准确性上,显示了95%CI为0.81(95%CI,0.72 - 0.88),0.80(95%CI,0.73 - 0.73 - 0.86)和0.87(95%)和0.87(95%)(95%CI,0.87(95%),95%CI(95%CI,0.72 - 0.88)和0.87(95%CI,0.84%),0.84(95%CI),表明汇总的灵敏度,特异性和AUROC曲线。研究类型,年龄组和样本量导致异质性。总而言之,我们的发现表明,虽然血浆DD-CFDNA诊断AR患者的准确性受到明显的异质性的限制,但它是诊断ABMR的有价值的生物标志物。
抽象目标我们的目的是通过纵向分析比较质子泵抑制剂(PPI)和组胺-2受体拮抗剂(H2RA)对肠道菌群的影响。设计健康的志愿者被随机分配,每天连续七天接收PPI(n = 23)或H2RA(n = 26)。我们在干预之前和之后收集了口服(唾液)和粪便样品,以进行元基因组下一代测序。我们分析了干预诱导的口腔和肠道微生物组的改变,包括微生物的丰度和生长速率,口服到肠道传播,并比较了PPI和H2RA组之间的差异。结果两种干预措施都破坏了肠道菌群,PPI表现出更明显的影响。pPI的使用导致口服到肠道传播的程度明显更高,并促进了肠道中特定的口服微生物的生长。这导致肠道中口腔物种的数量和总丰度显着增加,包括鉴定已知的疾病相关物种,例如核细菌核细菌和Anginosus链球菌。总体而言,基于肠道微生物组的机器学习分类器可以准确地将PPI与非PPI用户区分开,与H2RA与非H2RA用户的AUROC相比,在接收器操作特性曲线(AUROC)下达到了0.924的区域。结论我们的研究提供了证据表明,与H2RA相比,PPI对肠道微生物组和口服传播具有更大的影响,从而阐明了与长期使用PPI相关的某些疾病风险更高的机制。试用注册号CHICTR2300072310。