在切达(Cheddar),我们试图将新项目与我们的三个一般研究支柱保持一致:1。新兴电信系统,2。可持续系统和3。以人为中心的系统。We encourage the co-creation of new ideas in the fields such as: Multi-access Edge Computing (MEC), Intelligent Cloud-Native RAN, Cloud Native Networked Control Systems, Digital Twins, Foundational Models, 6G Carbon-Neutrality, ISAC, Green AutoML, Trustworthy AI in Network Optimisation, Formal Verification, Network Intelligence Privacy, Security and Post-Quantum.Joiner将在代表性条件和规模下对电信研发的实验验证,以推动影响力的结果。Joiner将提供国家分布式基础设施,以支持增强的实验,协作和开发电信R&D。最初,我们的目标是结合10个大学研究实验室和Sonic Lab(数字弹射器),以促进整个学术界的合作,同时使行业与中小企业参与实验研究。这样的测试床对于支持电信研发至关重要,以解决跨技术(软件和硬件)的端到端挑战,复杂性和共同依赖性,这是对未来网络的核心挑战,并且是6G开发的关键重点。
在切达(Cheddar),我们试图将新项目与我们的三个一般研究支柱保持一致:1。新兴电信系统,2。可持续系统和3。以人为中心的系统。We encourage the co-creation of new ideas in the fields such as: Multi-access Edge Computing (MEC), Intelligent Cloud-Native RAN, Cloud Native Networked Control Systems, Digital Twins, Foundational Models, 6G Carbon-Neutrality, ISAC, Green AutoML, Trustworthy AI in Network Optimisation, Formal Verification, Network Intelligence Privacy, Security and Post-Quantum.Joiner将在代表性条件和规模下对电信研发的实验验证,以推动影响力的结果。Joiner将提供国家分布式基础设施,以支持增强的实验,协作和开发电信R&D。最初,我们的目标是结合10个大学研究实验室和Sonic Lab(数字弹射器),以促进整个学术界的合作,同时使行业与中小企业参与实验研究。这样的测试床对于支持电信研发至关重要,以解决跨技术(软件和硬件)的端到端挑战,复杂性和共同依赖性,这是对未来网络的核心挑战,并且是6G开发的关键重点。
预测(F 1 = 0.91)具有高效的能源使用,并且可以使用特征重要性检查进行解释。此外,人工智能代理对人类人口统计数据保持中立,同时能够揭示个人特质。因此,这项研究的贡献包括有证据的结果,这些证据仅限于可用的人口和数据样本,表明某些年龄范围与性别组合之间存在行为差异。主要贡献是一个用于研究人类情绪价在情境中变化的新平台。该系统可以补充和取代(最终)传统的长列表自我评估问卷。SensAI + Expanse 平台贡献了几个部分,例如能够适应和学习以高性能预测情绪价状态的移动设备应用程序(SensAI),云计算(云)服务(SensAI Expanse)具有面向 AutoML 的随时可用的分析和处理模块。此外,智能手机传感为持续、非侵入性和个性化的健康检查做出了贡献。在未来,发展
机器学习领域(ML)已获得广泛采用,从而使ML适应特定方案的重要性,这仍然是昂贵且不繁琐的。对于解决ML任务的自动化(例如,汽车)的自动化方法通常是耗时的,对于Human Developers来说通常很耗时,很难理解。相比之下,尽管人类工程师具有不可思议的解决方案和理由的能力,但他们的经验和知识通常很少,并且很难通过定量方法来利用。在本文中,我们旨在通过引入一种新颖的框架Mlcopi-批次1来弥合机器智能和人类知识之间的差距,该框架1利用最先进的大语言模型来为新任务开发ML解决方案。我们展示了扩展LLM的能力构成结构化输入的可能性,并对解决新型ML任务进行彻底的推理。我们发现,经过一些专门设计,LLM可以(i)从ML任务的现有经验中观察到(ii)有效的原因,可以为新任务提供有希望的结果。生成的解决方案可直接用于实现高水平的竞争力。
在本文中,我们提出了Dragon(用于定向的无环形优化),这是一种自动生成效率高的深神经网络体系结构并优化其相关超参数的算法框架。该框架基于不断发展的无环图(DAG),定义比文献中现有的搜索空间更具灵活的搜索空间。它允许进行不同的古典操作的混合物:卷积,相互作用和密集的层,但也有更多新的操作,例如自我注意力。基于此搜索空间,我们建议邻里和进化搜索操作员,以选择网络的体系结构和超参数。这些搜索操作员可以与能够处理混合搜索空间的任何元疗法一起使用。我们在时间序列预测基准的时间序列上使用异步进化算法测试了我们的算法框架。结果表明,龙的表现优于最先进的手工制作的模型和汽车技术,用于在众多数据集上预测时间序列。Dragon已被实施为Python开源软件包1。关键字:神经体系结构搜索,超参数优化,元启发式学,进化算法,时间序列预测
大型语言模型 (LLM) 显著推动了自然语言处理 (NLP) 领域的发展,使从文本生成到问答等应用成为可能。然而,优化动态外部信息的集成仍然具有挑战性。检索增强生成 (RAG) 技术通过将外部知识源纳入生成过程来解决这一问题,从而增强 LLM 输出的上下文相关性和准确性。虽然 RAG 已被证明是成功的,但选择单个 RAG 技术的过程通常不是自动化的或优化的,从而限制了该技术的潜力和可扩展性。缺乏系统自动化会导致效率低下并阻碍对 RAG 配置的全面探索,从而导致性能不佳。AutoRAG 旨在通过引入一个自动化框架来弥补这一差距,该框架系统地评估管道不同阶段的众多 RAG 设置。AutoRAG 通过大量实验优化 RAG 技术的选择,类似于传统机器学习中的 AutoML 实践。这种方法简化了评估流程并提高了 RAG 系统的性能和可扩展性,从而能够更高效、有效地将外部知识集成到 LLM 输出中。
数据预处理是机器学习管道的重要组成部分(García等,2015; Alasadi和Bhaya,2017;çetinandYıldız,2022),因为它极大地影响了数据质量(Famili等,1997),并发现可以优化机器学习模型的关系,并将其发现。尽管是一个耗时的过程(Anaconda,2022),但这是基本的,尤其是对于大型数据集,降低维度可以在随后的过程中节省时间(García等,2016)。数据预处理不仅包括质量检查,还包括关键元素,例如转换,填充丢失的数据,离群值检测以及模型的变量选择。尽管普遍认为,基于树的模型不需要预处理,因为它们可以在没有任何更改的情况下处理它,但实验表明我们可以通过适当的预处理获得更好的结果(Caruana等,2008; Grinsztajn等,20222)。这种理解可能对自动化机器学习(AUTOML)管道有益,使我们能够优化和实施一个自动化的机器学习过程,该过程可以适当地预处理数据集以获得所选模型以产生更好的结果。本文提出了一个广泛的实验,涉及38个数据预处理策略,用于二进制和多类分类以及回归任务。我们使用五个基于树的模型:决策树,随机森林,XGBOOST,LIGHTGBM和CATBOOST。我们扩展了Forester 1软件,包括更多干扰自动模型学习的预处理。有关该工具的更多信息可在附录A中获得。
摘要 - 量词计算可以通过启用内核机器来利用量子kernels来代表数据之间的相似性度量来增强机器学习模型。量子内核能够捕获在经典设备上无法有效计算的数据中的关系。但是,没有直接的方法可以针对每个特定用例设计最佳量子内核。我们提出了一种方法,该方法采用了与神经体系结构搜索和自动化中使用的技术相似的优化技术,以启发式方式自动找到最佳内核。为此,我们定义了用于构建实现相似性度量作为组合对象的量子电路的算法,该算法是根据成本函数进行评估的,然后使用元效法优化技术进行了迭代修改。成本函数可以启用许多标准,以确保候选解决方案的有利统计属性,例如动态LIE代数的等级。重要的是,我们的方法独立于采用的优化技术。通过在高能物理问题上测试我们的方法获得的结果表明,在最佳情况下,我们可以相对于手动设计方法匹配或提高测试准确性,表明我们技术的潜力可以减少努力来提供卓越的结果。
美国政府最终用户:Oracle计划(包括任何操作系统,集成软件,任何已嵌入,安装或在交付的硬件上激活的程序,以及此类程序的修改)和Oracle计算机文档或美国政府最终用户提供或访问的其他Oracle数据是“商业计算机软件”,“商业计算机软件”,“商业计算机软件文档”,“商业计算机软件”,“商业计算机软件”,“有限的权利数据”或“有限的权利”适用于适用于适用的适用性,或者适用于适用性的适用性,并适用于适用于适用性。因此,使用,复制,重复,释放,显示,披露,修改,衍生作品的准备和/或适应i)Oracle程序(包括任何操作系统,集成软件,嵌入,安装或激活的任何程序,在此类程序中嵌入或激活的任何程序,对此类程序的限制和其他限制),III和/或III IS IS III和/或/或/或/或/或/或/或/或/或/或/或/或/或/或/或/ii ii III),IS或/或/或/或/或/或/或/或/或/或/或/或III III IS IIS)在适用的合同中。管理美国政府使用Oracle Cloud Services的条款由适用的此类服务的合同定义。没有其他权利授予美国政府。
项目详情:帕金森病 (PD) 是第二大常见神经系统疾病,是一种异质性疾病,其临床表现和发展轨迹各不相同。平均而言,患有 PD 的家庭每年因与该疾病相关的额外费用而损失超过 20,123 英镑,给个人家庭和 NHS 带来沉重负担。目前,英国约有 145,000 名 PD 患者,其医疗费用每年超过 7.28 亿英镑,总经济影响达到 36 亿英镑。如果目前的预测正确,到 2040 年,患有 PD 的人数将翻一番,这一数字将上升到 72 亿英镑以上。诊断 PD 一直具有挑战性,因为临床医生传统上依靠临床观察症状和患者病史,这可能很困难,尤其是在疾病的早期阶段,症状可能较轻、不一致或类似于其他疾病,如特发性震颤。这导致许多患者患有所谓的临床不确定的帕金森综合征 (CUPS)。最近一项社区全科医学研究表明,只有 53% 服用抗帕金森病药物的患者可以确诊为 CUPS。此类诊断错误可能导致不适当的管理策略,包括不必要的检查和不正确的治疗,进一步加剧患者及其家属的经济和情感负担。为了在临床症状不明确时协助诊断,建议使用多巴胺转运体 (DaT) 单光子发射计算机断层扫描 (SPECT) 成像来精确诊断和临床管理 PD。作为 DaT SPECT 成像的先驱和领导者,GE Healthcare(作为我们该项目的行业合作伙伴)在其 DaTscan(Ioflupane I 123 注射液)产品方面拥有超过 11 年的经验,该产品是一种用于脑 SPECT 成像的放射性药物,用于可视化纹状体多巴胺转运体,并有助于评估患有 CUPS 的患者。它已获得美国 FDA 的批准,到目前为止,全球已使用了 140 多万剂 DaTscan,平均每 3.5 分钟扫描一名患者。然而,DaT-SPECT 的 PD 诊断通常基于视觉评估,这种评估具有主观性,并且可能受到读者内部和读者之间的差异的影响。人工智能 (AI) 最近显示出良好的前景,因为它有可能在自动 PD 诊断方面取得重大进展。尽管取得了这些进展,但开发用于 PD 诊断的 AI 模型通常很耗时,并且需要专门的 AI 专业知识。此外,当前的 AI 模型通常以“黑匣子”的形式运行,提供没有明确理由的预测,这使得临床医生难以理解和信任 AI 的决策。该项目旨在开发一个可解释的端到端自动机器学习 (AutoML) 框架,以协助解释和分类 CUPS。它有两个目标。O1:开发一个用于对多巴胺转运体 (DAT)-SPECT 图像进行分类的 AutoML 框架,该框架可自动搜索最佳模型架构和超参数。O2:开发可解释的 AI (XAI) 组件,用于解释 O1 (O2.1) 中的 AI 模型和对话系统 (O2.2),