项目详情:帕金森病 (PD) 是第二大常见神经系统疾病,是一种异质性疾病,其临床表现和发展轨迹各不相同。平均而言,患有 PD 的家庭每年因与该疾病相关的额外费用而损失超过 20,123 英镑,给个人家庭和 NHS 带来沉重负担。目前,英国约有 145,000 名 PD 患者,其医疗费用每年超过 7.28 亿英镑,总经济影响达到 36 亿英镑。如果目前的预测正确,到 2040 年,患有 PD 的人数将翻一番,这一数字将上升到 72 亿英镑以上。诊断 PD 一直具有挑战性,因为临床医生传统上依靠临床观察症状和患者病史,这可能很困难,尤其是在疾病的早期阶段,症状可能较轻、不一致或类似于其他疾病,如特发性震颤。这导致许多患者患有所谓的临床不确定的帕金森综合征 (CUPS)。最近一项社区全科医学研究表明,只有 53% 服用抗帕金森病药物的患者可以确诊为 CUPS。此类诊断错误可能导致不适当的管理策略,包括不必要的检查和不正确的治疗,进一步加剧患者及其家属的经济和情感负担。为了在临床症状不明确时协助诊断,建议使用多巴胺转运体 (DaT) 单光子发射计算机断层扫描 (SPECT) 成像来精确诊断和临床管理 PD。作为 DaT SPECT 成像的先驱和领导者,GE Healthcare(作为我们该项目的行业合作伙伴)在其 DaTscan(Ioflupane I 123 注射液)产品方面拥有超过 11 年的经验,该产品是一种用于脑 SPECT 成像的放射性药物,用于可视化纹状体多巴胺转运体,并有助于评估患有 CUPS 的患者。它已获得美国 FDA 的批准,到目前为止,全球已使用了 140 多万剂 DaTscan,平均每 3.5 分钟扫描一名患者。然而,DaT-SPECT 的 PD 诊断通常基于视觉评估,这种评估具有主观性,并且可能受到读者内部和读者之间的差异的影响。人工智能 (AI) 最近显示出良好的前景,因为它有可能在自动 PD 诊断方面取得重大进展。尽管取得了这些进展,但开发用于 PD 诊断的 AI 模型通常很耗时,并且需要专门的 AI 专业知识。此外,当前的 AI 模型通常以“黑匣子”的形式运行,提供没有明确理由的预测,这使得临床医生难以理解和信任 AI 的决策。该项目旨在开发一个可解释的端到端自动机器学习 (AutoML) 框架,以协助解释和分类 CUPS。它有两个目标。O1:开发一个用于对多巴胺转运体 (DAT)-SPECT 图像进行分类的 AutoML 框架,该框架可自动搜索最佳模型架构和超参数。O2:开发可解释的 AI (XAI) 组件,用于解释 O1 (O2.1) 中的 AI 模型和对话系统 (O2.2),
主要关键词