Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
Krishanu Saha 1,2,3,4,45✉,Erik J. Q. Tsai 13,Ross C. Wilson 14,Daniel G. Anderson Bursac 8,Jarryd M. Campbell 24,Daniel F. Carlson 24,Elliot L Deverman 33,Mary E. Dickinson 34,Jennifer A. Doudna 4,48,Guanginga Gao 49,Ionta C. Ghiran 50,Peter M. Glazer 51,创立56,Cam W. Levine 42,Jon E. Levine 42, 62,63,Oleg Mirochnichenko 64,Redall Morize 65,Subhojit Roy 14.6马克·萨尔茨曼72,菲利普J乔纳森·K·瓦茨(Jonathan K.Krishanu Saha 1,2,3,4,45✉,Erik J. Q. Tsai 13,Ross C. Wilson 14,Daniel G. Anderson Bursac 8,Jarryd M. Campbell 24,Daniel F. Carlson 24,Elliot L Deverman 33,Mary E. Dickinson 34,Jennifer A. Doudna 4,48,Guanginga Gao 49,Ionta C. Ghiran 50,Peter M. Glazer 51,创立56,Cam W. Levine 42,Jon E. Levine 42, 62,63,Oleg Mirochnichenko 64,Redall Morize 65,Subhojit Roy 14.6马克·萨尔茨曼72,菲利普J乔纳森·K·瓦茨(Jonathan K.
葡萄干化字母卷。21,编号6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。 伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。具有不同组合物的玻璃样品是通过标准方法制备的。样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。分析了所获得的样品的光学特性。e OPT值的下降导致玻璃的折射率(n)值更高。但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。收到2024年3月2日; 2024年6月12日接受)关键字:光学和辐射屏蔽特性,吸收光谱拟合(ASF),辐射参数,光带隙,折射率1。介绍多年来,这些技术的进步无疑有助于人类在节省时间,精力和成本的同时完成众多任务的能力。但是,这种进步导致了对人类的健康危害。实际上,辐射的用途现在广泛用于各种目的,例如环境保护,增长促进,粮食生产,研究和医疗保健[1]。在各种应用中,例如伽马射线和X射线的医学成像或工业过程,选择合适的安全材料以保护有害辐射并确保辐射源的安全至关重要。[2]。尽管它们有许多缺点,但使用混凝土以屏蔽辐射的目的,各种低成本的常见实践。因为它们能够被塑造成不同的几何形状[3]。长时间暴露于核辐射会导致裂缝,降低密度[4]。除此之外,混凝土材料的强度可能会受到其中被困在其中的水量以及任何化学破坏构成重大挑战的影响,因为工人无法到达此类结构的内部。玻璃作为辐射屏蔽的可能材料,因为它们能够吸收γ射线和中子及其高可见性[5]。玻璃材料已被几位作者证明是有效的辐射罩。材料预防辐射的能力取决于几个因素,包括(LAC和MAC),原子数和电子密度,(MFP)等。准确评估这些参数至关重要。[6,7]。对最近文献的全面调查表明,玻璃的屏蔽和放射性特性一直是激烈调查的主题。El-Mallawany等人进行的一项研究; [8]专注于Tellurite Glass作为屏蔽的能力 *通讯作者:
通过计算流式细胞仪的流动细胞来评估免疫标记,我们发现源自脂肪组织的中型组织干细胞显示出相对较好的表面烙印。具有烙印CD90,CD73,CD105的正比率分别为99.85%,99.34%和97.98%。这些表面标记的正比率往往高于Tanya Debnath的研究(CD90 98%,CD73 99%)。9的负标记,以2.06%的速度获得。 当负面制造商计算出CD34/45 0.2-2.5%,而HLADR为2.2%时,该指数往往与Tanya Debnath的研究相似。 9根据国际细胞治疗协会的2006年法规,中等干细胞必须显示某些细胞表面标志,例如CD73,CD90和CD105,并且不显示其他标志,包括表面分子CD45,CD34,CD14,CD14或CD11b,CD11b,CD79 Alpha或CD19和CD19和CD19和HLA-DR。 11这是胡椒9的负标记,以2.06%的速度获得。当负面制造商计算出CD34/45 0.2-2.5%,而HLADR为2.2%时,该指数往往与Tanya Debnath的研究相似。9根据国际细胞治疗协会的2006年法规,中等干细胞必须显示某些细胞表面标志,例如CD73,CD90和CD105,并且不显示其他标志,包括表面分子CD45,CD34,CD14,CD14或CD11b,CD11b,CD79 Alpha或CD19和CD19和CD19和HLA-DR。 11这是胡椒
禁运 - 2301H英国时间3月19日星期二**注意:以下发布是欧洲临床微生物学和传染病大会的特别早期发布(ECCMID 2024,巴塞罗那,西班牙,4月27日至30日)。如果您使用这个故事,请归功于国会**在今年欧洲临床微生物学和感染性疾病大会之前提出的新研究(ECCMID 2024,巴塞罗那,巴塞罗那,4月27日至30日)在荷兰的一组研究人员中,荷兰的一组研究人员表明,最新的CRISPR-CAS基因编辑技术可以用来消除HIV的动作,从而消除了HIV的启发,以消除所有的病毒。由Elena Herrera-Carrillo博士领导的研究和她的团队的一部分(Yuanling Bao,Zhenghao Yu和Pascal Kroon)在荷兰的阿姆斯特丹UMC,在寻找HIV治疗方面取得了重大突破。CRISPR-CAS基因编辑技术是一种分子生物学的开创性方法,可以对生物体的基因组进行精确改变。这种革命性技术带来了其发明家,詹妮弗·杜德纳(Jennifer Doudna)和伊曼纽尔·夏尔潘蒂(Emmanuelle Charpentier),这是2020年诺贝尔化学奖,使科学家能够准确地靶向和修改有机体DNA的特定部分(遗传密码)。在指导RNA(GRNA)的指导下,像分子“剪刀”的功能一样,CRISPR-CAS可以在指定斑点切割DNA。此作用有助于缺失不需要的基因或将新遗传物质引入生物体细胞,为晚期疗法铺平了道路。目前正在使用许多有效的抗病毒药物治疗HIV感染。HIV治疗中的重大挑战之一是该病毒将其基因组整合到宿主的DNA中的能力,因此很难消除。尽管具有功效,但终身抗病毒疗法是必不可少的,因为在停止治疗时,艾滋病毒可以从已建立的储层中反弹。作者解释说,CRISPR-CAS基因组编辑工具为靶向HIV DNA提供了一种新方法。他们说:“我们的目的是开发一种坚固且安全的组合CRISPR-CAS疗法,努力为所有人的艾滋病毒治愈而努力,以使各种细胞环境中的各种艾滋病毒菌株失活”。承认,艾滋病毒可以感染体内不同类型的细胞和组织,每个细胞和组织都有其独特的环境和特征。因此,研究人员正在寻找一种在所有这些情况下靶向艾滋病毒的方法。在这项研究中,作者使用了该分子剪刀(CRISPR-CAS)和两个GRNA来对抗“保守”的HIV序列,这意味着它们集中在病毒基因组的一部分上,这些病毒基因组在所有已知的HIV菌株中保持不变,并实现了HIV感染的HIV感染的T细胞。通过关注这些保守的部分,该方法旨在提供能够有效地对抗多种HIV变体的广谱疗法。然而,他们解释说,车辆的尺寸(称为“矢量”)用于将编码治疗性CRISPR-CAS试剂编码的盒式盒子运输到细胞中,提出了后勤挑战,因为它太大了。因此,作者试用了各种技术,以减少
参考文献[1] D. F. Agterberg,J。C。S. Davis,SS。 D. Edkins,E。Fradkin,D。J。van Harlingen,St.A.Kivelson,P。A。Lee,L。Radzihovsky。 修订版 条件。 物理问题。 11,231(2020)。 R. Comin和A. Damascus,Annu。 修订版 条件。 物理问题。 7,369(2016)。 [3] JM Tranquad,P。 修订版 Lett。 79,2133(1997)。 G. Fabbris,D。Meyers,L。Xu,M .. M. P. M. Dean,物理。 修订版 Lett。 118,156402(2017)。 [5] T. Hotta和E. Dagotto,物理。 修订版 Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。van Harlingen,St.A.Kivelson,P。A。Lee,L。Radzihovsky。修订版条件。物理问题。11,231(2020)。R. Comin和A. Damascus,Annu。修订版条件。物理问题。7,369(2016)。[3] JM Tranquad,P。修订版Lett。 79,2133(1997)。 G. Fabbris,D。Meyers,L。Xu,M .. M. P. M. Dean,物理。 修订版 Lett。 118,156402(2017)。 [5] T. Hotta和E. Dagotto,物理。 修订版 Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。Lett。79,2133(1997)。 G. Fabbris,D。Meyers,L。Xu,M .. M. P. M. Dean,物理。 修订版 Lett。 118,156402(2017)。 [5] T. Hotta和E. Dagotto,物理。 修订版 Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。79,2133(1997)。G. Fabbris,D。Meyers,L。Xu,M .. M. P. M. Dean,物理。修订版Lett。 118,156402(2017)。 [5] T. Hotta和E. Dagotto,物理。 修订版 Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。Lett。118,156402(2017)。 [5] T. Hotta和E. Dagotto,物理。 修订版 Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。118,156402(2017)。[5] T. Hotta和E. Dagotto,物理。修订版Lett。 92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。Lett。92,227201(2004)。 J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。 [7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。 物理。 106,104116(2009)。 C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。 修订版 Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。92,227201(2004)。J. MM Tranquad,B。J。Sternlieb,J.D.Ax,Y。[7] M. Filippi,B。Kundys,St.Agretini,W。Preller,H。Oyanagi,N。L。L. Saini,J。Apple。物理。106,104116(2009)。C. H. H. Chhen,St。W。Cheong和A. St. Cooper,物理。修订版Lett。 71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。Lett。71,2461(1993)。 [9] St. M. H. H. Lander,J。Zarestky,P。J。 Brown,C。Stassis,P。Metcalf和JM Honig,物理。 修订版 Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。71,2461(1993)。[9] St. M. H. H. Lander,J。Zarestky,P。J。Brown,C。Stassis,P。Metcalf和JM Honig,物理。修订版Lett。 68,1061(1992)。 [10] St. W. Cheong, 修订版 b 49,7088(1994)。Lett。68,1061(1992)。[10] St. W. Cheong,修订版b 49,7088(1994)。[11]修订版Lett。 79,2514(1997)。 [12] W. Bao,R。Heffner,J。L. L. 修订版 Lett。 84,3978(2000)。 M. E. Ghazi,P。D。Spencer,St.B.Wilkins,P。D。Hatton,D。Mannix,D。Prabhakan,A。T。Boothroyd和St. W. Cheong,Phys。 修订版 b 70,144507(2004)。 [14] R. Kakeshita,H。Yoshiza,T。Tanabe,T。Kassufuji和Y. 修订版 b 64,144432(2001)。 [15] P. G. Freeman,A。T。Boothroyd,D。Prabhakaran,M。Enderle和C.需要,物理。 修订版 b 70,024413(2004)。 [16] 修订版 b 73,094429,094429(2006)。Lett。79,2514(1997)。[12] W. Bao,R。Heffner,J。L. L.修订版Lett。 84,3978(2000)。 M. E. Ghazi,P。D。Spencer,St.B.Wilkins,P。D。Hatton,D。Mannix,D。Prabhakan,A。T。Boothroyd和St. W. Cheong,Phys。 修订版 b 70,144507(2004)。 [14] R. Kakeshita,H。Yoshiza,T。Tanabe,T。Kassufuji和Y. 修订版 b 64,144432(2001)。 [15] P. G. Freeman,A。T。Boothroyd,D。Prabhakaran,M。Enderle和C.需要,物理。 修订版 b 70,024413(2004)。 [16] 修订版 b 73,094429,094429(2006)。Lett。84,3978(2000)。 M. E. Ghazi,P。D。Spencer,St.B.Wilkins,P。D。Hatton,D。Mannix,D。Prabhakan,A。T。Boothroyd和St. W. Cheong,Phys。 修订版 b 70,144507(2004)。 [14] R. Kakeshita,H。Yoshiza,T。Tanabe,T。Kassufuji和Y. 修订版 b 64,144432(2001)。 [15] P. G. Freeman,A。T。Boothroyd,D。Prabhakaran,M。Enderle和C.需要,物理。 修订版 b 70,024413(2004)。 [16] 修订版 b 73,094429,094429(2006)。84,3978(2000)。M. E. Ghazi,P。D。Spencer,St.B.Wilkins,P。D。Hatton,D。Mannix,D。Prabhakan,A。T。Boothroyd和St. W. Cheong,Phys。修订版b 70,144507(2004)。[14] R. Kakeshita,H。Yoshiza,T。Tanabe,T。Kassufuji和Y.修订版b 64,144432(2001)。[15] P. G. Freeman,A。T。Boothroyd,D。Prabhakaran,M。Enderle和C.需要,物理。修订版b 70,024413(2004)。[16]修订版b 73,094429,094429(2006)。
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有
奖奖与区分理学学士学位,2010年比约恩·安德森(Bjorn Anderson),纳尔逊·安杜贾尔(Nelson Andujar),吉尔赫姆·阿劳霍(Guilherme Araujo),马里奥·阿维拉(Mario Avila),萨姆拉特·巴塔塔亚(Samrat Bhattacharyya),奥斯汀·布劳瑟(Austin Brauser),威尔·布朗(William Brown),威尔·布朗(William Brown),罗德尼(Rodney),罗德尼(Rodney) Estela Gonzalez, Frances Jeffrey-Coker, Monica Joshi, Tushar Khandelwal, Edward Kim, Ken- neth Koo, Todd Kwao-Vovo, Hiemann Lee, Ning Leung, Raphael Levy, Salvatore Marsico, Mirek Martincik, Ian McKinley, Ismael Nieto, Jefferson Okraku, Darren Pagan, Philippe Putzeys, Jie Qi, Khadijah Ransom, Jeffrey Rodri- guez, Chelsey Roebuck, Rajiv Shah, Islam Shawki, David Shimel, Anup Shrestha, Daniel Sievert, Adam Steege, Ian Van Sant, Tat-Hong Wong SPECIAL CONGRATULATIONS TO THE 2010 MECHANICAL ENGINEERING AWARD RECIPIENTS: The American Society of Mechanical Engineers Award: Edward Kim Edward A.
Bao,L.,Zheng,N.,Zhao,H.,Hao,Y.,Zheng,H. (2011)。 使用神经电刺激对拴系蜜蜂的飞行控制。 国际IEEE/EMBS神经工程会议,墨西哥坎昆。 http://doi.org/10.1109/ner.2011.5910609 Bermudez,F。G.和Fearing,R。(2009)。 拍打机器人上的光流。 IEEE/RSJ国际智能机器人和系统会议。 http://doi.org/10.1109/iros.2009.5354337 Bozkurt,A.,Paul,A.,Pulla,S.,Ramkumar,A. (2007)。 在早期变形过程中插入的微型探针微型系统平台,以启动昆虫飞行肌肉。 IEEE第20届国际微电动机械系统会议(MEMS),日本诺戈。 https://doi.org/10.1109/memsys.2007.4432976 Bozkurt,A.,Gilmour,R。,R。,&Lal,A。 (2009a)。 射射线助理的射击辅助飞行。 IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。 https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A. (2009b)。 基于昆虫素界面的神经结核病学。 IEEE交易,关于生物医学工程的交易,56,1727–1733。 https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A. (2008a)。 基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。 美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。 从昆虫到机器。Bao,L.,Zheng,N.,Zhao,H.,Hao,Y.,Zheng,H.(2011)。使用神经电刺激对拴系蜜蜂的飞行控制。国际IEEE/EMBS神经工程会议,墨西哥坎昆。http://doi.org/10.1109/ner.2011.5910609 Bermudez,F。G.和Fearing,R。(2009)。拍打机器人上的光流。IEEE/RSJ国际智能机器人和系统会议。http://doi.org/10.1109/iros.2009.5354337 Bozkurt,A.,Paul,A.,Pulla,S.,Ramkumar,A.(2007)。在早期变形过程中插入的微型探针微型系统平台,以启动昆虫飞行肌肉。IEEE第20届国际微电动机械系统会议(MEMS),日本诺戈。https://doi.org/10.1109/memsys.2007.4432976 Bozkurt,A.,Gilmour,R。,R。,&Lal,A。(2009a)。射射线助理的射击辅助飞行。IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。 https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A. (2009b)。 基于昆虫素界面的神经结核病学。 IEEE交易,关于生物医学工程的交易,56,1727–1733。 https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A. (2008a)。 基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。 美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。 从昆虫到机器。IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A.(2009b)。基于昆虫素界面的神经结核病学。IEEE交易,关于生物医学工程的交易,56,1727–1733。https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A.(2008a)。基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。从昆虫到机器。http://doi.org/10.1109/memsys.2008。 4443617 Bozkurt,A.,Lal,A。,&Gilmour,R。(2008b)。 对昆虫肌肉的电加热进行飞行控制。 加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。 https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。http://doi.org/10.1109/memsys.2008。4443617 Bozkurt,A.,Lal,A。,&Gilmour,R。(2008b)。对昆虫肌肉的电加热进行飞行控制。加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。 https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。IEEE机器人和自动化,15,68-74。https://doi.org/10.1109/mra.2008。929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。皇家学会界面杂志,20160060 13,http://doi.org/10。1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。使用未成熟的植入微流体的工程昆虫飞行代谢。芯片上的实验室,9,669–676。https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N.脉冲UWB接收器SOC进行昆虫运动控制。IEEE固态电路杂志,45,153–166。https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。