• 几种替代的钠兼容热存储选项正在开发/商业化 • 固体材料中的显热能存储,例如石墨(Graphite Energy) • 相变材料中的潜在能量存储,例如碳酸盐和氯化物盐(UniSA),Al和Al-Si(Azelio) • 组合显热/潜在能量存储,即嵌入固体基质材料中的PCM,例如石墨中的Al(MGA Thermal)
两家工厂现有的 MHI 已达到使用寿命。它们需要大量的维护。此外,2016 年污水污泥焚烧最大可实现控制技术 (SSI MACT) 法规规定,一旦现有焚烧炉的维护和改造总累计成本超过焚烧炉原始购买成本的 50%,则该单元不再被视为“现有”并被视为“新”。根据 2016 年 SSI MACT 法规,“新”焚烧炉需要遵守更严格的空气排放要求。MSD 已确定,任何未来用于改进 MHI 的投资都可能导致它们被重新归类为“新”。因此,MSD 已决定用新的流化床焚烧炉 (FBI) 替换每个工厂现有的 MHI。
这项工作报告了开发用于操作中子表征的缩小尺寸的激光粉末融合装置。描述了设计注意事项,设备配置和详细的设置。该设备已针对中子衍射的安装和工具进行了优化,用于对印刷过程中金属组件的结构和微观结构演变和构成的多种研究。与设备的介绍结合使用,我们提供了操作中性中子衍射的示例,用于应变分析和操作中子成像,以进行缺陷表征和温度映射在瑞士散布中子源的两个不同光束线上。通过获取可易受裂纹材料的衍射模式并跟踪衍射峰的变化,可以在处理过程中挖掘出固定体积内弹性菌株的热贡献的演变。散装缺陷表征。中子束衰减的变化与最终的微观结构相关,它证实了该技术在操作中表征了探测器内部缺陷形成的能力。我们进一步证明了如何使用铍过滤器,因此如何使用冷中子光谱的长波长部分,可以在打印双金属复合材料时在空间和时间分辨的温度图中获得。
激光粉末床融合(L-PBF)添加剂制造(AM)是一种基于金属的AM工艺,能够生产具有细微几何分辨率的高价值复杂组件。作为熔体池特征(例如熔体池的大小和尺寸)与制造零件的孔隙度和缺陷高度相关,至关重要的是,预测过程参数如何影响构建过程中熔体池的大小和尺寸,以确保构建质量。本文提出了一个两级机器学习(ML)模型,以预测在扫描MultiTrack构建过程中的熔体大小。为了说明热历史对熔体池尺寸的影响,在建模体系结构的低级别上预测了所谓的(Prescan)初始温度,然后用作上层物理信息的输入特征,以预测熔体池大小。从Autodesk的NetFabB仿真生成的仿真数据集用于模型培训和验证。通过数值模拟,与幼稚的一级ML相比,提出的两级ML模型表现出很高的预测性能,其预测准确性显着提高,而无需将初始调为初始调节作为输入特征。[doi:10.1115/1.4052245]
1工程,技术和设计学院,坎特伯雷基督教教会大学,坎特伯雷CT1 1Qu,英国2 Que 2,2 Que,英国2 Que,阿拉伯科学,技术和海上运输学院工业与管理工程系,亚历山大21599,埃及; Mahmoudelsayed12@gmail.com博士3埃及Tanta 31512的生产工程与机械设计系; m.ahmadein@f-eng.tanta.edu.eg 4机械工程系,Imam Mohammad Ibn Saud Saud University(IMSIU),Riyadh 11432,沙特阿拉伯; naalsaleh@imamu.edu.sa(N.A.A。 ); smataya@imamu.edu.sa(S.A.)5机械工程系,工程学院,位于阿尔·萨塔姆·本·阿卜杜勒齐兹(Sattam bin Abdulaziz Prince)的Al Kharj,Al Kharj,Al Kharj 16273,沙特阿拉伯; moh.ahmed@psau.edu.sa 6伯明翰大学工程学院,伯明翰B15 2TT,英国; k.e.a.essa@bham.ac.uk *通信:enghanisalama@yahoo.com1工程,技术和设计学院,坎特伯雷基督教教会大学,坎特伯雷CT1 1Qu,英国2 Que 2,2 Que,英国2 Que,阿拉伯科学,技术和海上运输学院工业与管理工程系,亚历山大21599,埃及; Mahmoudelsayed12@gmail.com博士3埃及Tanta 31512的生产工程与机械设计系; m.ahmadein@f-eng.tanta.edu.eg 4机械工程系,Imam Mohammad Ibn Saud Saud University(IMSIU),Riyadh 11432,沙特阿拉伯; naalsaleh@imamu.edu.sa(N.A.A。); smataya@imamu.edu.sa(S.A.)5机械工程系,工程学院,位于阿尔·萨塔姆·本·阿卜杜勒齐兹(Sattam bin Abdulaziz Prince)的Al Kharj,Al Kharj,Al Kharj 16273,沙特阿拉伯; moh.ahmed@psau.edu.sa 6伯明翰大学工程学院,伯明翰B15 2TT,英国; k.e.a.essa@bham.ac.uk *通信:enghanisalama@yahoo.com
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
1 湖南科技大学机电学院,湖南省高效轻合金构件成形技术与抗损伤评价工程研究中心,湘潭 411201 2 中南大学,国家级高强度结构材料技术重点实验室,长沙 410083 3 杭州电子科技大学材料与环境工程学院,先进磁性材料研究所,杭州 310018 4 长春工业大学材料科学与工程学院,先进结构材料教育部重点实验室,长春 130012 * 通讯作者:liuyang7740038@163.com (YL); federer.song@163.com (YS); songxiaolei@ccut.edu.cn (XS)
由于时间和成本的缘故,后处理铣削操作通常不切实际,可能需要专门的工具。为了减少对特殊工具和额外加工的需求,开发了混合增材制造系统,以顺序方式打印和铣削,以在一个机器平台上实现所需的表面光洁度。商用机器平台将铣削与定向能量沉积系统(例如 Optomec、Mazak、DMG Mori)和粉末床熔合系统(例如 Matsuura 和 Sodick)相结合,以实现小于 0.8 µm 的表面粗糙度 (Sa) [1, 2]。可以直接从构建室获得精加工表面。已知的第一个关于组合式粉末床熔合和铣削的研究是在 2006 年由松下电工株式会社(日本以外的松下电工)和金泽大学进行的,目的是制造
1应用地质与地球物理学系,三角洲,3584 BK UTRECHT,荷兰2地球科学与环境变化系,伊利诺伊大学伊利诺伊大学乌尔巴纳 - 奇普恩大学,香槟,香槟,伊利诺伊州61801,美国3大陆货架服务marc.roche@economie.fgov.be 4独立研究员,法国Locmaria-Plouzane 29280; Xavier.lurton@orange.fr 5Françaisde Recherche Pour l'eploitation de la Mer(Ifremer),法国Plouzane 29280; laurent.berger@ifremer.fr(L.B.)6赫尔大学的能源与环境研究所,英国赫尔Hu6 7rx,7Thünen海洋渔业研究所,27572,德国Bremerhaven,德国8 Scripps海洋学研究所,综合海洋学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,圣地亚哥大学,CA 92037,US A 9 Kongsberg Discovery,22529 Hamburg,Ferverg,Ferverg,Ferver, peer.fietzek@kd.kongsberg.com 10沿海结构与浪潮部,三角洲,荷兰2629 HV代尔夫特; mark.kleinbreteler@deltares.nl *通信:thaienne.vandijk@deltares.nl;电话。 : +31-6-5289-0378†这些作者对这项工作也同样贡献并共享第一作者。 ‡目前退休。 §当前地址:拉夫堡大学,拉夫伯勒大学,拉夫堡大学3TU,英国,地理与环境。6赫尔大学的能源与环境研究所,英国赫尔Hu6 7rx,7Thünen海洋渔业研究所,27572,德国Bremerhaven,德国8 Scripps海洋学研究所,综合海洋学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,圣地亚哥大学,CA 92037,US A 9 Kongsberg Discovery,22529 Hamburg,Ferverg,Ferverg,Ferver, peer.fietzek@kd.kongsberg.com 10沿海结构与浪潮部,三角洲,荷兰2629 HV代尔夫特; mark.kleinbreteler@deltares.nl *通信:thaienne.vandijk@deltares.nl;电话。: +31-6-5289-0378†这些作者对这项工作也同样贡献并共享第一作者。‡目前退休。§当前地址:拉夫堡大学,拉夫伯勒大学,拉夫堡大学3TU,英国,地理与环境。
激光粉末床熔合 (LPBF) 增材制造 (AM) 中的同轴熔池监测通常利用各种光电探测器来获取与动态热熔池现象相关的信号。反过来,预计这些热特征与制造质量相关,因此可以与最终的 AM 部件相关。为了将这些信号值与真实的物理温度联系起来,必须进行热校准。然而,大多数热校准源无法轻易复制典型 LPBF 熔池的相对高温和小尺寸。本文介绍了一种潜在的热校准方法,该方法使用较低温度的商用现成校准黑体。该方法计算任意直径的假设小源的“有效”温度,其辐射温度与较大、较低温度的黑体相同。本文详细介绍了理论原理,提供了概念验证计算,然后演示了在商用 LPBF 熔池监测系统上进行的程序。最后,虽然该方法本身并不提供绝对校准,也不能将真实熔池温度归因于熔池监测传感器信号,但提供了详细的实用性的讨论,详细说明了为什么测量的校准值是现实的,并描述了该方法的未来改进。