抽象背景/目标:头部和颈部鳞状细胞癌(HNSCC)是上层机构消化道的侵略性上皮恶性肿瘤,与存活不良有关。作为HNSCC微环境的一部分,白介素18(il -18)/il -18结合蛋白(IL -18BP)信号传导越来越有趣,因为潜在的生物标志物和治疗靶标。然而,在HNSCC患者的免疫学环境中,IL -18BP的全身表达水平仍未得到探索。材料和方法:在34例HNSCC患者(在无线电)治疗过程中,在34例HNSCC患者中,在34例HNSCC患者中进行了与临床治疗的HNSCC患者相关的诸如C型反应性蛋白,急性相蛋白铁蛋白和IL -18的ELISA测量。结果:与健康对照组相比,HNSCC患者的血浆IL -18bp浓度显着升高,并且在治疗前后与IL -18水平密切相关。然而,同样升高的血浆铁蛋白水平与IL -18或IL -18BP无关。值得注意的是,治疗后IL − 18BP和IL 18水平的变化表现出良好的平衡,表明功能反馈机制。结论:结果表明,HNSCC中有强大的IL -18/IL -18BP反馈调节,这可能有助于肿瘤细胞逃避抗肿瘤免疫反应。这种平衡不受放射疗法或化学放疗的影响,强调了IL -18BP作为治疗靶标的潜力和HNSCC的预后生物标志物。关键字:HNSCC,IL -18-结合蛋白,白介素18,铁蛋白,液体生物标志物。
霉菌毒素是真菌的有害毒性代谢产物,以污染物形式存在于许多食品、乳制品和农产品中,对健康构成潜在危害。因此,降低其生物利用度的新型净化方法对提高人类安全具有重要意义。近年来,已经开发出生物方法来控制霉菌毒素污染。利用微生物降解霉菌毒素(尤其是黄曲霉毒素 (AF),由曲霉属物种产生,主要是寄生黄曲霉、黄曲霉和黄曲霉)是一种重要的生物基方法,可降低食品中的霉菌毒素含量,且不会产生有害中间体和副产物。许多研究报告称,解毒是通过将霉菌毒素与微生物的细胞壁结构结合而发生的。解毒过程涉及多种因素,包括微生物菌株、毒素类型、微生物浓度、微生物活力和接触时间。本综述主要讨论了益生菌对霉菌毒素进行生物净化的现有文献,描述了此类过程中涉及的解毒机制以及影响相互作用稳定性的因素。还报告了该领域的未来前景。根据目前的数据,人们应该能够选择最有效的微生物来降解浓度范围广泛的霉菌毒素。
已经表明,单甲基化的帽结构在核事件中起着重要作用。盖结构与增强前mRNA剪接有关。最近,还建议这种结构促进RNA从细胞核到细胞质的转运。我们先前已经从HELA细胞核提取物中鉴定出并纯化了8OKD核盖结合蛋白(NCBP),这可能会介导这些核活性。在本报告中,我们描述了编码NCBP的互补DNA(cDNA)的克隆。确定了NCBP的部分蛋白质序列,并从HELA cDNA文库中分离出NCBP的全长cDNA。该cDNA编码了790个氨基酸的开放阅读框,其计算的分子质量为91,734 daltons,其中包含大多数确定的蛋白质序列。但是,蛋白质序列与任何已知蛋白质都没有显着同源性。转染实验表明,在HELA细胞中瞬时表达的表位标记的NCBP仅在核质中定位。使用截短的NCBP cDNA进行的类似实验表明,这种核定位活性由N末端70氨基酸区域赋予。
摘要 - 可变性的绑定是象征性的和认知的基石。但是,在连接主义模型中如何实现约束力使神经科学家,认知心理学家和神经网络研究人员困惑。自然包含绑定操作的一种连接主义模型是向量符号体系结构(VSA)。与其他有关可变结合的建议相反,VSA中的结合操作是维度具有维护性的,它可以代表复杂的层次数据结构,例如树,同时避免尺寸的组合扩展。经典的VSA通过密集的随机矢量编码符号,其中信息分布在整个神经元种群中。相比之下,在大脑中,特征在单个神经元或小组神经元的活性中更局部编码,通常形成神经激活的稀疏载体。遵循Laiho等人。(2015),我们探索了符号推理,并具有稀疏分布式表示的特殊情况。使用来自压制感应的技术,我们首先表明经典VSA中的可变结合在数学上等同于稀疏特征向量之间的张量产品结合,这是另一个众所周知的结合操作,从而增加了维度。这种理论上的结果促使我们研究了二维保护的结合方法,其中包括将张量矩阵减少到单个稀疏向量中。一种通用稀疏矢量的一种结合方法使用随机投影,另一种块状圆形卷积,对于具有块结构,稀疏块编码的稀疏向量定义。我们的实验表明,块 - 本地卷积卷积结合具有理想特性,而基于随机投影的结合也有效,但是有损的。我们在示例应用中证明了具有块圆形圆形卷积和稀疏块码的VSA的性能与经典VSA相似。最后,我们在神经科学和神经网络的背景下讨论了我们的结果。
卡培他滨和奥沙利铂。3化学疗法的挑战是对吉西他滨和顺铂的耐药性,吉西他滨和顺铂是转移性CCA的广泛使用的化学治疗药物。一些患者由于癌细胞突变而产生了对这些药物的抗性。4粘蛋白型和混合型CCA对化学疗法和分子靶向剂的反应不同。这一发现强调了基于CCA的特定亚型来裁缝策略以改善患者预后的重要性。5免疫疗法已成为包括CCA在内的癌症治疗中的一种治疗方式。6抗体和抗体片段,例如片段抗原结合(FAB),单链可变片段(SCFV)和可变重链(VH),在癌症免疫疗法中起着至关重要的作用。这些分子通过募集免疫成分或与细胞毒性药物链接而直接靶向并破坏癌细胞。7一些抗体,例如ipilimumab,恢复了表达免疫检查点抑制剂的耗尽的细胞,特别是T-淋巴细胞抗原-4(CTLA-4)和程序性死亡-1(PD-1),增强了对癌症的免疫反应。8抗体片段也充当T细胞或NK细胞中嵌合抗原受体的成分。9,10开发有效免疫疗法的主要挑战是特异性,因为肿瘤抗原通常源自形成异常或经历突变的自我抗原。11,12发现对癌细胞的抗体发现,而没有结合或与正常细胞结合,将最小化正常细胞的副作用,并具有高能力发展为有效的治疗工具。
荧光滴定表明,人类低分子量激肽原 (LK) 能以高亲和力结合两分子的蛋白酶 L 和 S 以及木瓜蛋白酶。相比之下,第二分子的蛋白酶 H 的结合要弱得多。通过滴定法(监测酶活性损失和沉降速度实验)证实了 2:1 的结合化学计量。蛋白酶 L 和 S 与木瓜蛋白酶的结合动力学表明,两个蛋白酶结合位点的结合速率常数 k,,,,, = 10.7-24.5 x 106 M" sI 和 k,,,,, = 0.83-1.4 x 106 M" s-'。将这些动力学常数与完整 LK 及其分离结构域的先前数据进行比较,表明结合较快的位点也是结合较紧的位点,位于结构域 3 上,而结合较慢、亲和力较低的位点位于结构域 2 上。这些结果还表明,两个结合位点之间或来自激肽原轻链的蛋白酶结合没有明显的空间障碍。
摘要近年来,使用肠降血糖素类似物的使用已成为一种有效的方法,可以实现2型糖尿病(T2D)患者的胰岛素分泌和体重减轻。结合和刺激多个受体的激动剂表现出了特殊的希望。然而,包括恶心和腹泻在内的关闭目标效应仍然是使用这些药物的并发症,并且越来越多地寻求具有优化的药理学特征和/或偏置信号传导的修改版本。在这里,我们描述了与胰甘氨酸样肽-1(GLP-1)和葡萄糖依赖性胰岛素多肽(GIP)受体(GLP-1R和GIPR)结合的分子的合成和特性。HISHS-2001显示GLP-1R的亲和力增加,并且倾向于减少该受体与FDA批准的双GLP-1R/GIPR激动剂Tirzepatide的内在化和回收利用。HISHS-2001还显示出对cAMP的产生与β-arrestin 2募集的偏见明显更大。相比之下,在GLP-1R处,GαS募集较低,而GIPR则较高。对肥胖的高血糖DB/db小鼠的施用,Hishs-2001增加了循环胰岛素的增加,同时降低了体重和HBA1C,其功效与Tirzepatide的疗效相似,剂量较低。因此,HISHS-2001代表具有改进药理特征的新型双受体激动剂。
图 2:巴马汀与 DNA 的插入式 a) 和小沟 b) 结合模式的代表性快照。c) 所用的 H4'、H5'、H5” 氢原子的放大图或残基 A9 的 RDF 计算 d) 对于残基 A9、A24 和 A26,通过积分 DNA 链中的 H4'、H5'、H5” 氢原子相对于溶剂水分子的氧原子的贡献计算得出的 RDF。相应的 DNA 核苷酸在图 a) 和 b) 中突出显示,并根据氢-𝜋 相互作用的强度进行颜色编码(红色:强,橙色:中等,绿色:弱)。
药物设计中的中心是对生物分子的鉴定,它们独特而牢固地结合了9靶蛋白,同时最大程度地降低了它们与他人的相互作用。相应地,精确的结合效果10预测,可以从大量的稳定物质中准确选择合适的候选物,这可以大大减少与实际实验方案相关的费用。12在这方面,最近的进步表明,与其他传统计算方法相比,深度学习方法表现出卓越的性能13,尤其是随着大型数据集的出现。14这些方法是复杂且非常耗时的,因此代表着重要的15个瓶颈,用于其开发和实际应用。在这种情况下,16个Quantum机器学习的新兴领域有望增强众多经典的机器学习算法-17 rithms。在这项工作中,我们向前迈出了一步,并提出了一个混合量子卷积18神经网络,该网络能够将经典对应物的复杂性降低20%,而19仍保持最佳性能。此外,这导致在训练阶段的20个成本和时间最高可节省40%的成本和时间,这意味着21种药物设计过程的大幅加速。22
Present Address: Jimmy Elias, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 606037, USA Present Address: Jane J. Rosin, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA Present Address: Amanda J. Keplinger, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 606037, USA目前的地址:Alexander J. Ruthenburg,《分子遗传学和细胞生物学》,芝加哥大学,芝加哥,伊利诺伊州606037,美国,美国