摘要 涡轮发动机转子叶片非包容性失效可能造成的危害一直是各航空发动机制造商长期关注的问题,而在临界工况下对失效叶片进行全面包容也是满足转子完整性要求的重要考虑之一。通常,在发动机设计阶段需要评审涉及发动机包容能力的因素有很多,例如机匣厚度、转子支撑结构、叶片重量和形状等。然而,证明发动机包容能力的首要方法是风扇叶片脱落试验和安全裕度(MS)分析。本文基于具体的发动机模型,旨在讲解FAR Part 33中航空发动机包容性要求的要点,并介绍MS分析和风扇叶片脱落试验在发动机适航认证中的实施。通过介绍,将对业界评估发动机包容能力和准备发动机认证程序中的最终试验演示有很大帮助。 ª 2013 CSAA & BUAA.由 Elsevier Ltd. 制作和托管。
摘要 混合增材制造 (Hybrid-AM) 描述了多操作或多功能的增材制造系统。在工业中,混合增材制造的应用趋势日益增长,这带来了改进制造新零件或混合零件的新方法的挑战。混合增材制造无需任何组装操作即可生产功能齐全的组件。在本研究中,混合增材制造系统意味着要设计一个物体,该物体部分由预制或现成的零件制成,并通过电弧增材制造 (WAAM) 工艺添加。为此,设计并构建了一个使用脉冲 TIG-Wire-Arc 技术的混合增材制造原型系统。构建的成型金属沉积 (SMD) 系统在 x、y 和 z 轴上有三个驱动器和一个额外的旋转驱动器(第四轴)。使用混合增材制造机器,可以将线状材料沉积在现有的原始轮廓上,即棒、管、轮廓或任何 3D 表面上,从而缩短生产时间。通过这种方式,可以将螺旋形特征或扭曲的叶片形状添加到圆柱形零件上。在本研究中,使用开发的混合 AM 原型机将不锈钢螺旋桨叶片沉积在管道上。使用非平面刀具路径沉积后续层,并使用 4 轴 CNC 加工完成螺旋桨叶片的表面。
6 Outlook .............................................................................................................................................. 14
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
生存能力通常被描述为“刀片时间”,指的是工程挖掘资产挖掘战斗或防护位置所需的时间。这一概念起源于生存能力理论,最早在 1985 年的《战地手册 (FM) 5-103《生存能力》中提出。1 该手册由 FM 5-15《野战防御工事》演变而来,侧重于工程,并提供了建造堑壕、炮台和掩体的细节;它还概述了地形评估原则,因为它们适用于野战防御工事,并解释了如何通过地面组织将各个野战防御工事组合成一个统一的系统。2 正如陆军技术出版物 (ATP) 3-37.34《生存能力行动》中所述,生存能力理论在诞生近 40 年后仍然主要针对旅级及以下的工程人员和军官。3
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
有效的发动机健康监测对于飞机安全至关重要,尤其是对于老化的机器。ITWL 为 TS-11 Iskra 喷气教练机开发了 SNDŁ-1b/SPŁ-2b 诊断系统,该系统自 1993 年以来已在波兰空军成功使用 [1, 2]。该系统具有诊断功能,需要技术人员参与。飞机维护和安全方面的众多好处促使国防部支持开发新的发动机健康监测系统,该系统也基于叶尖正时技术。它的目的不仅仅是升级后继产品,还应使用市场上可用的新技术。该系统订购了两个版本,分别用于 SO-3 涡轮喷气发动机 (TS-11) 和 RD-33 涡轮风扇发动机 (Mig-29)。
总之,风力涡轮机叶片设计面临各种挑战和考虑因素。成本效益、制造可扩展性、材料选择、结构完整性、环境影响、社会接受度、维护和电网整合都是需要解决的重要因素。行业利益相关者、研究人员和政策制定者之间的持续研究、创新和合作对于克服这些挑战并确保风能行业的可持续增长至关重要。通过解决这些问题,风能行业可以继续为更清洁、更可持续的能源未来做出贡献。
燃气涡轮转子的元素图1显示了典型喷气发动机转子的横截面。该发动机由一个带有许多风扇附带的单个轴组成。每个风扇由一个轮毂组成,其中一组叶片从集线器向外延伸。叶片是用异国情调的材料加工的,能够在可能大于1200 o的温度下承受力。刀片通常会灵活地安装。除非转子高速旋转,否则它们不会保持其工作位置,以使离心力克服重力。这些风扇在喷气发动机中被称为“阶段”。这些阶段使用极高的公差将其组装到轴上。平衡喷气发动机转子如果转子完全刚性,则可以通过旋转转子,测量惯性的CG偏移和乘积来纠正其不平衡,然后在两个平面上的每个平面增加校正权重以补偿不平衡。实践中这不起作用。相对于不平衡力,轴的直径较小,因此当它高速旋转时会弯曲。随着速度的增加,测得的不平衡将增加,因为轴的弯曲会导致CG偏移增加。这意味着必须在与不平衡来源相对应的位置进行镇流器校正。这种类型的校正属于称为“柔性转子平衡”的类别。因此,燃气轮机转子是平衡最困难的物体之一。解决问题的解决方案是在将其组装到转子中之前分别平衡每个阶段。如果将叶片组装在集线器中的位置,可以简化平衡每个阶段的任务,从而导致最小的初始不平衡。有两种方法对刀片进行分类:按重量或瞬间。时刻分类会取得最佳平衡,但需要一台特殊的机器来测量瞬间。