Krishan Bishnoi Farzad Rostam-Abadi 美国陆军 TARDEC 沃伦,密歇根州 摘要 一种功能分级 NPR(负泊松比)材料概念已被开发用于陆军的一项关键应用——防爆。目标是开发一种综合计算设计方法和创新的结构材料概念,用于防爆导流板,该导流板可以将材料集中到最需要的区域,并利用爆炸能量调整其形状,以提高爆炸缓解和乘员保护。计算设计方法包括最佳导流板形状设计和最佳 NPR 材料分布,以进一步提高防护效果,同时最大限度地降低车辆的 CG 高度和导流板的重量。使用这种新概念制造的结构会对爆炸做出反应,并在爆炸力下重新配置,以提供最大的防爆保护。所介绍的研究工作包括两种基本的导流板设计方法:最佳导流板形状设计和创新导流板中的最佳 NPR 材料配置和分布。引言负泊松比 (NPR) 材料也称为膨胀材料 [1-2],由于其独特的行为而备受关注。与传统材料不同,NPR 材料沿垂直方向压缩时可能会收缩,这导致材料在压缩载荷下可以自身集中以更好地抵抗载荷的独特特性。当载荷幅度增加时,它也会变得更硬、更坚固。研究发现,NPR 可以改善材料/结构性能,包括增强的耐热/抗冲击性、断裂韧性、抗压痕性和剪切模量等 [1-3]。人们研究了一系列人造 NPR 材料/结构,例如键合砖结构、典型的多孔材料(蜂窝和泡沫)、微孔聚合物和分子 NPR 材料,其中一些已经成功制造 [4-7]。作者开发了一种三维版本的 NPR 材料 [8],具有多种应用潜力,包括图 1 所示的防爆结构。
当前的集成钢制过程分为两个主要阶段。铁矿石首先在爆炸炉中减少,并在随后的步骤中除去杂质。由于爆炸炉的炉灶饱和,氧部分压力很低,并且杂质元素(例如P和Si)与FE一起减小。尤其是,几乎所有存在的矿石中存在的P均简化为其元素形式,并且必须在稍后在钢制过程中重新氧化以将其作为炉渣清除。近年来,钢制造的原材料的质量降低了,尤其是铁矿石中的P浓度增加了。1)同时,对高质量和极低钢的需求增加了,这反过来又对钢制造业构成了重大挑战。2)据相肯定,需要一种有效的方法从下部原材料生产低P钢是一个紧迫的问题。作者先前提出了一个在降低喷速炉之前从铁矿石中去除P的过程,该过程在低于当前的钢化过程的温度下进行。3–5)图1显示了使用热力学软件事实6.4进行计算的结果。它显示了还原平衡组成对氧部分压的依赖性和含有原材料的喷速炉温度的依赖性。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
这个公告是“爆炸噪声的概述:特征,评估和缓解”,是国防部(DOD)噪音工作组(DNWG)发出的一系列技术公告之一。用于军事噪声管理,爆炸噪声定义为由大口径武器(20mm及更大)和爆炸性电荷产生的噪声。由于训练学说的变化和部队从海外返回家乡基地,爆炸噪声在军事设施上变得越来越普遍。近年来,接受简易爆炸装置(IED)训练的部队数量增加了。通常,由于时间和财政限制,必须在本地设施进行此培训。此外,在过去的几年中,由于部队部署,大多数装置的大量口径武器射击下降。一旦部队返回,训练水平应恢复到前部部署水平。大型武器(火炮,坦克)和炸药的噪音可以长距离距离,并且仍然足够响亮,以引起负面的社区反应。对爆炸噪声的特征,评估方法以及噪声管理和缓解策略的广泛理解将使更好的计划和社区沟通和宣传,以最大程度地减少由于噪声问题而造成的训练限制。
Annelid发育中的祖细胞:卵母细胞端粒细胞是Annelid胚胎中的大细胞,它们不对称地分裂以形成许多较小的爆炸细胞,然后将其增殖并分化为节段组织。这些细胞在Annelids的发展中起着至关重要的作用,在水ches和其他寡头中详细研究了细胞细胞。在第二轮后,五对卵母细胞是从d象限的大粒子中指定的。每对产生外胚层或中胚层组织,四对形成外胚层组织,一对形成中胚层组织。端粒具有两个不同的细胞质结构域:端质和叶片质。端质包含核,核糖体,线粒体和其他细胞器,而卵黄质主要由蛋黄血小板组成。在细胞分裂后,只有端质被传递到子干细胞上。O和P型蛋白细胞是从形成等效组的两个相同的前体中指定的。来自周围细胞的信号决定了雌胆母细胞的命运及其后代的命运,Q Bandlet与相邻的O/P Bandlet之间的相互作用引起了P命运。在某些物种中,例如helobdella triserialis,覆盖细胞的临时上皮在诱导命运中起作用。实验结果表明,在某些蠕虫中,O和p没有对等效组,而P谱系在其出生时从O/P Protelblast阶段开始。在水ech中,卵母细胞是引起爆炸细胞的细胞。在其他物种(例如helobdella ustensis)中,其他信号促进了P谱系分化,包括来自Q谱系细胞的骨形态蛋白分子信号传导。有四种类型的卵母细胞:N和Q,每个片段贡献了两个爆炸细胞; O,P和M,每个段覆盖一个分段边界的一个爆炸细胞。随着开发的进展,每个包含64个爆炸细胞的N和Q带子都滑过O,P和M带子,每个Bandlet都包含32个细胞。此动作允许在所有带子进入完整寄存器之前指定每个带子中的分段边界。卵母细胞负责产生水ech体的不同部分。N和Q型母细胞每段贡献两个爆炸细胞,一个用于前半部分,一个在后半部分。O,P和M型蛋白细胞贡献一个跨越节段边界的爆炸单元。水ches中的分割过程很复杂,涉及卵母细胞的运动和不同段的形成。对卵母细胞的研究为这组生物体的发展和进化机理提供了宝贵的见解。
到2050年,在铁和钢铁行业中实现零净,需要从煤炭基技术转向低排放的生产。Global Energy Monitor的2024年全球钢铁厂跟踪器和全球爆炸炉追踪器数据表明,尽管朝着低排放的直接减少铁(DRI)和电动弧炉(EAF)生产朝着明显的转变,但爆炸炉(BF)的开发却是持续的,并且对气候和顶级开发者的风险呈现出独特的风险。在该国一级,中国保持了全球运营能力的巨大份额,但印度已成为所有即将到来的铁和钢厂中最大的开发商,这是煤炭基于煤炭的燃料基炉基氧气炉(BF-BOF)。考虑到这些趋势,该行业必须继续推动绿色钢铁,并且过渡计划必须转化为具体的行动。
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
removal from plain carbon steel components • Coatings for anti-bacterial and fuel tank applications • Nano-composite Hard Coating • Certified Reference Materials • Erosion resistant steel • Graphene coated steel • Synthetic flux and dephosphorization of Steel in Induction Furnace • DRI from mill scale and lean grade non coking coal in Tunnel Kiln • Briquetting of Ore fines • Pellet-sinter composite agglomerate of Iron氧化物罚款用于BLAST