摘要:在双层石墨烯 (BLG) 中打开带隙对于石墨烯基电子和光子器件的潜在应用具有重要意义。本文,我们报告了通过在 BLG 和 Ru 衬底之间插入硅烯在 BLG 中产生相当大的带隙。我们首先在 Ru(0001) 上生长高质量的 Bernal 堆叠 BLG,然后将硅烯插入 BLG 和 Ru 之间的界面,这通过低能电子衍射和扫描隧道显微镜得到证实。拉曼光谱显示,插入的 BLG 的 G 和 2D 峰恢复到独立 BLG 特征。角分辨光电子能谱测量表明,BLG 中打开了约 0.2 eV 的带隙。密度泛函理论计算表明,大带隙打开是 BLG 中掺杂和波纹/应变共同作用的结果。这项工作为 BLG 中带隙打开的机制提供了深刻的理解,并增强了基于石墨烯的器件开发的潜力。关键词:双层石墨烯、带隙、协同机制、插层、硅烯 ■ 介绍
图 4:体育场 QD 电位剖面示意图和相关模拟。(a)上图:MLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的 MLG 带和电荷中性点(𝐸 456)。下图:体育场 MLG QD 的示意图。(b)上图:BLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的带隙和三角扭曲的 BLG 带和𝐸 456。下图:体育场 BLG QD 的示意图。(c、d)对 (c) MLG 和 (d) BLG 体育场 QD 的电子局域态密度的数值紧束缚模拟。d𝐼/d𝑉。对角条纹在 (d)(具有间隙屏障壁)中可见,但在 (c)(具有无间隙壁)中不可见。 BLG 体育场的 TB 模型包括 𝛾 8 跳跃和空间均匀的 60 meV 间隙。这些参数的灵感来自我们之前对圆形 BLG QD 的实验表征 [9],(另见 SI 第 6 节)。在 BLG 体育场 𝑑𝐼/𝑑𝑉 ? 图模拟中,仅考虑了子晶格 𝐴 > 的 LDOS 贡献。
BLG 是牛奶中的主要过敏原,约 3% 的婴儿和幼儿对牛奶过敏 [1],而全脂牛奶制成的辅食可能会引发严重疾病 [2]。从牛奶中去除 BLG 可降低其致敏性,并提高其作为幼儿食品的潜力。迄今为止,降低牛奶混合物致敏性的主要方法是深度变性蛋白质。实际上,我们谈论的是肽的混合物,但这可能导致形成新的致敏表位。一种现代替代方法是创建具有 BLG 基因敲除的动物的方法[3,4]。在工业化奶牛品种上进行此类工作尤其重要,因为它可以让您创造特定特征,而不会影响其他具有经济意义的特征和生产力。此前,人们结合了转基因、基因敲除和 SCNT,以及 TALEN 和原核微注射。所有这些都显示出足够的有效性。 Crispr/Cas9 基因编辑技术的快速发展 [5, 6] 使我们能够在用于生产的牛品种中有效引入 BLG 基因突变。在本文中,我们介绍了开发和创建用于引入双链
第二次谐波(2Ω)非线性霍尔效应(NLHE)[1,2]可以通过用基于大的基于晶体的同类产品代替古老的基于界面的设备,从而带来逻辑和能量收获技术的新范式[3]。另一方面,NLHE对费米表面的几何形状非常敏感。nhle可以在鞍点[4]和扁平带的位置提供丰富的信息,并直接探测原子上薄的Chern绝缘子中的拓扑相变[5]。在原子薄量子材料的异质结构中获取有关电子特性的信息至关重要,那里的结构对称性工程和热功能可调的复杂的准粒子带共存。在这项工作中,我们在反转对称性的高质量双层石墨烯(BLG)上进行了实验研究,这是掺杂(n)介电位移的函数(d)和温度(t)。我们的结果揭示了不可预见的外在散射和界面应变诱导的内在浆果曲率偶极子(BCD)的二二,其符号和幅度可以通过N和/或D在BLG的低能带边缘附近调节。远离带边缘,观察到NLHE由外部散射占主导地位。BLG中的第二个谐波产生效率V XX(Y)2Ω /VXXΩ2为〜50 V -1,在所有可伸缩材料中最高。此外,v xx(y)2Ω的符号变化的n -d分散轨迹轨迹在BLG中带走了与拓扑相关的LIFSHITTINTIONS。我们的工作将BLG建立为一个高度可调的平台,以生成NLHE,进而探测双层石墨烯中引人入胜的低能电子结构。
我们提出了一项有关通过任意极化光照射增强双层石墨烯(BLG)的热电(TE)性能的综合研究,重点是具有锯齿形边缘的AA和AB堆放的配置。利用紧密结合理论和密度功能理论(DFT)的结合,我们系统地分析了光照射对电子和语音传输特性的影响。光照射改变了电子跳跃参数,创造了不对称的传输函数,从而显着增加了Seebeck系数,从而增强了功绩(FOM)的整体形象。对于语音贡献,DFT计算表明,与AA相比,ABSTACKSTACKSTACKENSTACK STACKENS呈现较低的晶格导热率,这归因于增强的Anharmonic散射和声子组速度。组合分析表明,在两种堆叠类型中,FOM都超出了统一性,在辐射引起的间隙附近有了显着改善。此外,我们探讨了FOM对系统尺寸和温度的依赖性,这表明光辐射的BLG对有效的热电学转换和废热恢复具有很大的希望。我们的结果显示在广泛的辐照参数中的响应良好。这些发现提供了通过光引起的修改为高级TE应用优化BLG的关键见解。
石墨烯及相关材料石墨烯及相关材料包括单层石墨烯 (SLG)、双层石墨烯 (BLG)、多层石墨烯 (MLG)、氧化石墨烯 (GO) 及其与金属、聚合物和陶瓷的复合材料[Pasricha, R. 等人,一种基于 Ag-石墨烯的纳米复合材料的简便新型合成方法。Small (2009) 和 Ferrari, AC 等人,石墨烯、相关二维晶体和混合系统的科学和技术路线图。Nanoscale (2015)]。石墨烯是一种 sp2 键合材料,其碳原子排列成六边形结构。SLG 是一种零带隙材料,因为 π 和 π* 带在狄拉克点相切。在狄拉克点,石墨烯电子的行为类似于无质量费米子,这导致其具有高导电性和迁移率。石墨烯是有史以来测试过的最坚固的材料之一;它表现出高导热性和润滑性。此外,以 AB 配置堆叠两个 SLG 层可生成 BLG,而 MLG 则包含多个堆叠在一起的 SLG。石墨烯的电子结构会随着层数的增加而变化,从而改变其性质。GO 是一种含有多个功能部分的氧化物石墨烯片。与石墨烯不同,GO 具有
摘要:基于石墨烯的体育场形量子点(QD)的实验实现很少,并且与扫描的探针显微镜不相容。然而,这些QD中电子状态的直接可视化对于确定这些系统中量子混乱的存在至关重要。我们报告了由单层石墨烯(MLG)和双层石墨烯(BLG)组成的异质结构设备中静电定义的体育场形状QD的制造和表征。要实现体育场形状的QD,我们利用扫描隧道显微镜的尖端在支撑六角硼氮化硼中充电。体育场的可视化状态与基于紧密结合的模拟一致,但缺乏清晰的量子混乱特征。基于MLG的体育场QD中缺乏量子混乱特征归因于由于克莱因隧穿而引起的配置潜力的泄漏性质。相反,对于基于BLG的体育场QD(具有更强的配置)的量子混乱是由平滑的配置电势所阻止的,从而降低了状态之间的干扰和混合。关键字:量子点,单层石墨烯,双层石墨烯,量子混乱,STM
摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
图12在(a)和(a)之前和(b)4分弯曲测试期间(a)之前和(b)裂纹进行载荷转移的示意图。顶部:4分弯曲测试下的复合样品。中间:拉伸应力下的局部微观结构(红线表示BLG血小板,大胆的血小板是重叠的血小板)。底部:(a)三连接处FLG血小板的皱纹结构,诱发了效率低下的载荷转移和复合材料中的低刚度; (b)由于有效的载荷转移,两端的FLG血小板的拉伸填充桥桥嵌入了断裂表面[30]。