简介神经形态计算是指试图模仿大脑信号处理的信号的方式[1]。与基于具有两个分离的内存和处理单元并以顺序操作的von Neumann架构的传统计算机相比[2],大脑过程以并行方式[3,4]。,它在速度和能源效率方面提供了巨大的好处,因为数据传输是造成大部分功耗的原因。克服某些局限性的方法之一是开发可以改善信号处理的新算法[5,6],但是,它仍然需要在内存和处理器之间进行数据传输和限制其效率。在处理这些限制的过程中,在网络中可以实施的人工神经元和突触的开发中,付出了很多努力[1]。基于光子学,即,神经形态光子学,可用光子作为信号载体,以在网络的不同部分之间传递信息[7-12]。多亏了几乎无限的带宽,与标准CMOS技术的兼容性以及几乎为零的功耗,可以进行基本的矩阵乘法,与神经态电子相比,它可以提供巨大的改进。可以通过以光速度在单个波导上将多个信号列入多个信号来实现完整的并行性。同时,光权重可以提供计算的低延迟。通过将这些优点结合起来,至少与电子同行相比,至少有很少的数量级改善。但是,实现此类任务的实现需要仍缺失的新材料平台和低损失体系结构。氮化硅(SIN)是光子整合电路(PIC)技术的普遍材料,因为它与标准CMOS过程兼容[13,14]。它允许在单个芯片上进行具有成本效益的设备和电子和光子组件的协整。此外,与其他材料相比,基于SIN平台的光子设备的特征是对温度漂移的容忍度更高,光学损耗和较低的波长范围操作,较大的波长透明度和改善的串扰值[14]。已经被证明是一个适当的材料平台,用于实现神经网络,表明自由度增加的是设计线性神经元[8,9]。因此,SIN平台可以作为神经形态光子学中的路由层起关键作用[9]。
我们研究了灰灰含量的影响,并用混凝土浪费和大理石废物替换了碎石骨料,并在预制的混凝土互锁块中(PCIB)中的大理石浪费。我们已经将PCIB的特性与三种不同的骨料替代比产生的烟灰进行了比较。确定了PCIB的抗压强度,拉伸强度,密度,明显的孔隙率,减轻体重的吸水,磨损分解,碱性 - 硅利反应和冻结 - 透射性抗性。将PCIB与压碎的砂岩进行比较时,用混凝土废物和大理石废物替换碎石石,从而降低物理和机械性能。相比之下,用灰灰替换水泥(从10%到20%)对增加PCIB的重要特性具有显着影响。2011 Elsevier Ltd.保留所有权利。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。该预印本版的版权持有人于2023年10月26日发布。 https://doi.org/10.1101/2023.10.25.23.23297491 doi:medrxiv preprint
He XD, Goyal RK。CaMKII 抑制使膜超极化并通过关闭肠道平滑肌中的 Cl 电导来阻断氮能 IJP。Am J Physiol Gastrointest Liver Physiol 303:G240–G246,2012 年。首次发表于 2012 年 4 月 26 日;doi:10.1152/ajpgi.00102.2012。— 氮能“慢”抑制连接电位 (sIJP) 的离子基础尚未完全了解。本研究的目的是确定钙调蛋白依赖性蛋白激酶 II (CaMKII) 依赖性离子电导在肠道平滑肌神经肌肉接头处氮能神经传递中的性质和作用。研究在豚鼠回肠中进行。使用改良的 Tomita 浴技术在同一细胞中诱导被动超极化电紧张电位 (ETP) 和因 sIJP 或药物治疗引起的膜电位变化。使用尖锐微电极在同一平滑肌细胞中记录膜电位和 ETP 的变化。在非肾上腺素能、非胆碱能条件下通过电场刺激以及嘌呤能 IJP 的化学阻滞引发氮能 IJP。超极化过程中 ETP 的改变反映了平滑肌中的主动电导变化。氮能 IJP 与膜电导降低有关。CAMKII 抑制剂 KN93(而非 KN92)、Cl 通道阻滞剂尼氟酸 (NFA) 和 K ATP 通道开放剂 cromakalim 使膜超极化。但是,KN93 和 NFA 与膜电导降低有关,而 cromakalim 与膜电导增加有关。在 NFA 诱导的最大超极化之后,未观察到与 KN93 或 sIJP 相关的超极化,表明 Cl 通道信号传导饱和阻断。这些研究表明,抑制 CaMKII 依赖性 Cl 传导可介导氮能 sIJP,从而导致 Cl 传导最大程度关闭。
摘要:脑信号可以通过脑电图 (EEG) 捕获,并用于各种脑机接口 (BCI) 应用。使用 EEG 信号对运动想象 (MI) 进行分类是帮助中风患者康复或执行某些任务的重要应用之一。处理 EEG-MI 信号具有挑战性,因为这些信号很弱、可能包含伪影、取决于患者的情绪和姿势,并且信噪比低。本文提出了一种多分支卷积神经网络模型,称为带卷积块注意模块的多分支 EEGNet (MBEEGCBAM),使用注意机制和融合技术对 EEG-MI 信号进行分类。注意机制应用于通道和空间。与其他最先进的模型相比,所提出的模型是一种轻量级模型,具有更少的参数和更高的准确性。所提模型在使用 BCI-IV2a 运动想象数据集和高伽马数据集时,准确率分别为 82.85% 和 95.45%。此外,在使用融合方法 (FMBEEGCBAM) 时,准确率分别达到 83.68% 和 95.74%。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月24日发布。 https://doi.org/10.1101/2023.05.17.541233 doi:Biorxiv Preprint
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 10 月 7 日发布。;https://doi.org/10.1101/2023.05.17.541233 doi:bioRxiv preprint
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
这项工作的目的是强调离散裂缝网络(DFN)模型中输入参数不确定性及其工程应用的影响。我们展示了输入参数的误差如何,此处的体积不连续性强度P 32影响了DFN模型和两个重要的岩石力学工程应用:现场碎片尺寸分布以及在隧道周围的可移动块形成的潜在,作为隧道周围的可移动块,作为块洞穴矿物设计的两个关键参数。通过两种不同的方法估算了体积不连续性强度(P 32):第一个方法直接从1D数据估算p 32,直接实现,而第二个方法是基于DFN模型的模拟,并且需要1D和2D数据集,从而使其较小的灵活和时间消耗。发现,从直接方法获得的p 32的估计值比通过模拟方法更准确,在构建的离散断裂网络模型中产生了重大影响,并在估计隧道周围可移动块的形成的原位片段化尺寸分布和估计中。
Ultralight contains the following key features: • Detects and blocks exploits, common malware, and other identifiers in any hostile content sent by attacker • Detects and blocks exploitive behavior occurring in an application designed to open potentially harmful content (PDF reader, office soft- ware, Java runtime, JavaScript interpreter, etc.)• Detects and blocks suspicious or malicious behavior both in running applications and in the system itself • Prevents compromised applications from performing hostile actions, such as dropping malware onto a system • Detects and blocks malware with a traditional file scanning engine • Detects and blocks memory-resident malware • Removes or quarantines malicious artifacts from the system • Disinfects objects that have been modified by file infectors • Utilizes WithSecure's™ Security Cloud to detect anomalies in files or file metadata • Sends suspicious executable files to WithSecure's™ Security Cloud for extended analysis • Prevents malware from contacting a C&C server • Uses automatic forensics and computer ecosystem anomaly detection to detect malware that other techniques are unable to prevent or detect