批准第一类抗菌bedaquiline用于结核病标志着抗结核药物开发的突破。该药物抑制分枝杆菌呼吸,并代表了完全不同的代谢过程作为可毒靶空间的验证。在这篇综述中,我们讨论了分枝杆菌呼吸抑制剂发展的进步,以及将该策略应用于其他病原体的潜力。分枝杆菌的非发酵性质解释了它们对呼吸抑制的脆弱性,我们警告说,该策略在其他生物体中可能并不同样有效。相反,我们还展示了揭示呼吸道途径的辅助功能的基本研究,这对于某些病原体的毒力,药物敏感性和适应性至关重要,它引入了将细菌呼吸作为抗生素策略的另一种观点。
杭州盛廷医疗科技有限公司拥有一款基于靶向二代测序(NGS)的试剂盒,用于同时识别分枝杆菌种类并预测结核分枝杆菌复合群(MTBC)菌株的耐药性。该试剂盒 TBseq® 可直接应用于痰液、支气管肺泡灌洗液、胸腔积液或分枝杆菌阳性培养物等临床标本。它依赖于引物多重扩增混合物的深度测序,针对与一线和二线抗结核(抗 TB)药物(利福平、异烟肼、吡嗪酰胺、乙胺丁醇、氟喹诺酮类、阿米卡星、卡那霉素、卷曲霉素、链霉素、对氨基水杨酸、环丝氨酸、乙硫异烟胺/丙硫异烟胺、贝达喹啉、氯法齐明和利奈唑胺)耐药相关的 21 种主要 MTBC 基因。分枝杆菌种属鉴定是通过针对 16S 和 hsp65 基因区域进行的。
GenoScreen 拥有基于新一代测序 (NGS) 的试剂盒,可同时识别分枝杆菌种类、进行基因分型并预测结核分枝杆菌复合群 (MTBC) 菌株的耐药性;该试剂盒 (Deeplex® Myc-TB) 可直接用于临床样本 (1) 。该检测依赖于单个 24 重扩增子混合物的深度测序,针对与一线和二线抗结核药物(利福平、异烟肼、吡嗪酰胺、乙胺丁醇、氟喹诺酮类、阿米卡星、卡那霉素、卷曲霉素、链霉素、乙硫异烟胺、贝达喹啉、氯法齐明和利奈唑胺)耐药性相关的 18 个主要 MTBC 基因区域。 hsp65 基因是分枝杆菌种属识别的靶标,而 spoligotyping 靶标(CRISPR/直接重复 [DR] 基因座)和耐药相关靶标中的系统发育单核苷酸多态性 (SNP) 用于 MTBC 菌株基因分型。
Deeplex® Myc-TB 检测依赖于与对一线和二线药物耐药性相关的 18 个主要 MTBC 基因靶点的深度测序(图 3)。根据在这些基因座中观察到的突变的存在或不存在以及对参考数据库*****的查询,预测样本中的 MTBC 菌株对每种抗生素敏感或耐药,或具有尚未表征的突变(图 1)。可以轻松查看单个靶点位置和突变及其序列覆盖深度。可通过超链接访问描述突变与耐药性关联的参考文献信息。总体而言,该检测可以预测对 15 种抗结核药物/药物类别的耐药性,包括最近推出的化合物,如贝达喹啉和利奈唑胺,使其成为迄今为止最详尽的可直接应用于样本的基因型检测。
Deeplex® Myc-TB 检测依赖于对 18 个主要 MTBC 基因靶点进行深度测序,这些靶点与对一线和二线药物的耐药性有关(图 3)。根据在这些基因座中观察到的突变的存在或不存在情况以及对参考数据库的查询,预测样本中的 MTBC 菌株对每种抗生素敏感或耐药,或具有尚未表征的突变(图 1)。可以轻松看到各个靶点位置和突变以及它们的序列覆盖深度。可通过超链接访问描述突变与耐药性关联的参考文献信息。总的来说,该检测可以预测对 15 种抗结核药物的耐药性,包括最近推出的贝达喹啉和利奈唑胺 4 等化合物,使其成为迄今为止最详尽的可直接应用于样本的基因型检测。
此外,耐药性在1955年首次在国家一级进行了研究,[2]仍代表着一个重大威胁,耐酸匹配素耐药(RR-TB)的速率(RR-TB)和多种耐药性(MDR-TB)结核病(MDR-TB)的结核病(MDR-TB)的结核病范围为3-4%,从未有过3-4%以前受过治疗的治疗方法,而该治疗的治疗率是以前的18%(以前曾经是不受欢迎的人)。[1]更令人担忧的是,在临床分离株中已经记录了对最近开发的抗菌剂,例如Bedaquiline,[3-6]和Delamanid [3,4,7,8]。对MTB基因组的分析给出了第一个迹象,即脂质和固醇降解[9]具有与其生活方式作为强制病原体的重要功能。[10]已经证明,MTB可以用胆固醇作为唯一的碳源生长[9,11],并且发现其利用是通过一种机制在小鼠中持续存在的细菌所必需的,该机制被认为涉及颠覆IFN -γ-刺激刺激的典型碳源的消耗。[12]参与固醇分解代谢的基因也被鉴定为灵长类动物的毒力决定因素,[13],甚至有人提出MTB具有胆固醇的专业传感器,可介导细菌与宿主细胞膜之间的相互作用。[14]胆固醇通过由MCE4操纵子编码的大型跨膜复合物转运到MTB中。[12,15–17]
Vivian Cox 医学博士,杨森结核病研发临床负责人“杨森 LA/ER 结核病管道现状”背景 – 结核病 (TB) 药物的 LAI 制剂。用途。• 潜伏性结核感染 (LTBI) 治疗与纳入结核病 (TBD) 治疗方案。• 用于预防或治疗的伴随 LA 药物。提高依从性的潜力。• 必须考虑注射剂 (IM 或 SC) 的可接受性,尤其是对于受益于 TPT 的幼儿。• 应将患者偏好研究和患者报告的结果纳入临床开发。可能的结核病指征。• 单剂量或间歇性 TPT 非常适合目前的 ART 服务提供模式。• 缩短疗程的 TBD 治疗(例如,口服引导以进行培养转化,然后服用一到两剂 LAI 制剂)。理想的肠外 LTBI 方案 (TPP) 的关键属性。 • 针对药物敏感 (DS) 和耐药 (DR) 结核病的活性。• 单次注射(体积 2mL;≤25 号针头)或植入。开发用于 TPT 的 LAI Bedaquiline (BDQ) 的考虑因素。良好的化学、制造和控制 (CMC) 特性。• 低水溶性 (0.0002mg/mL);低血浆清除率 (0.04mcg/h/kg);以及对 Mtb 的低 MIC(0.03mcg/mL;高
摘要:结核分枝杆菌(M. TB)是TB的致病药物,是一种顽强的病原体,在世界各地盛行,潜在地感染了全球人群的大约四分之一。当宿主的免疫系统衰弱时,休眠细菌的无症状状态会升级为可传播的活性形式。当前的药物敏感(DS)M。TB菌株的前线治疗方案是一种6个月的方案,涉及四种不同的药物,需要严格依从性以避免复发和耐药性。贫困,难以获得适当的治疗以及缺乏患者依从性,导致出现更险恶的药物(DR)菌株,与一线方案相比,与毒性更高,更昂贵的药物的治疗需要更长的治疗时间。在过去的十年中,仅批准了三种新药,即Bedaquiline(BDQ)和两种硝基咪唑衍生物Delamanid(DLM)和Pimomanid(PMD),在过去的十年中,用于治疗结核病(TB),即具有新的抗TB药物,具有新的抗TB药物,并在50多年的时间内将其引入了新的批准,并批准了新的属性,并将其归纳为新的属性。在此,我们将讨论M. TB发病机理,当前治疗方案以及针对结核病控制工作的挑战。本综述还旨在突出几个小分子,这些小分子最近被确定为有希望的临床前和临床抗TB药物候选物,它们抑制了M. TB中的新蛋白质靶标。
最近,我们提供了证据,表明高线粒体ATP的产生是癌症治疗的新治疗靶标。使用ATP作为生物标志物,我们从总细胞群体中分离了“代谢性能”癌细胞。重要的是,ATP高的癌细胞在表型上是最具侵略性的,具有增强的茎状特性,表现出多药耐药性和细胞迁移,侵袭和自发转移的能力。在支持这些观察结果的过程中,ATP高细胞表明了线粒体蛋白和其他蛋白质生物标志物的上调,这些蛋白质特定与茎和转移有关。因此,我们提出,“能量性能”癌细胞将更好地抵抗I)i)i)敌对的微环境和/或II)常规化学疗法的选择压力,从而使它们自然而然地基于其生存,以基于其高的ATP含量,最终驱动肿瘤肿瘤肿瘤和膨胀的延伸和膨胀的中转。根据这一能量假设,ATP-HIGH MDA-MB-231乳腺癌细胞在体内在临床前模型中转移的能力急剧增加。相反,通过使用FDA批准的药物(Bedaquiline)处理,转移很大程度上被阻止,该药物与线粒体ATP合酶结合并抑制了ATP耗竭。从临床上讲,这些新的治疗方法可能对预防治疗失败和避免癌细胞休眠的重要意义,通过采用ATP止动疗法,甚至针对特殊的癌细胞。
氧化磷酸化,电子传输链(ETC)和三磷酸腺苷(ATP)合酶的联合活性已成为抗生素治疗感染毒成菌和相关病原体的抗生素的宝贵靶标。在氧化磷酸化中,ET等建立了跨膜电化学质子梯度,从而为ATP合成提供动力。通过基于荧光素酶的ATP合成或测量氧气消耗的检测来监测氧化磷酸化可能在技术上具有挑战性且昂贵。这些局限性降低了这些方法在表征分枝杆菌氧化磷酸化抑制剂的效用。在这里我们表明,基于荧光的倒膜囊泡酸化(IMV)可以检测和区分抑制ETC的抑制,抑制ATP合酶和非特异性膜解偶联。在该测定中,来自smegmatis的IMV通过ETC或ATP合酶的活性酸化,后者对遗传进行了修饰,以使其充当ATP驱动的质子泵。通过9-氨基-6-氯-2-甲氧基因氨酸的荧光监测酸化,该酸氧化含量会在酸化的IMV中积聚和淬灭。非特异性膜解耦合器可防止琥珀酸酯和ATP驱动的IMV酸化。相比之下,ETC复合物III 2 IV 2抑制剂TelaceBEC(Q203)可防止琥珀酸驱动的酸化,但不能防止ATP驱动的酸化和ATP合酶抑制剂bedaquiline防止ATP驱动的酸化,但不能防止ATP驱动的酸化,但不能防止琥珀酸助长驱动的酸化。我们使用该测定法表明,正如先前提出的那样,兰索拉唑硫化物是复合物III 2 IV 2的抑制剂,而硫代嗪则是非特定于分枝杆菌膜的抑制剂。总体而言,该测定是简单,低成本且可扩展的,这将使其可用于识别和表征新的分枝杆菌氧化磷酸化抑制剂。