1零件(生物)聚合物:聚合物在医疗1应用中的高级应用,包括组织工程的支架,细胞1封装的聚合物,热响应材料,制造,生物制作和1个物理特性。2关于生物陶瓷,生物相容性和组织工程的部分:化学,物理1和生物聚合物基材料的机械性能。1生物相容性,与细胞和身体的相互作用。3关于生物特征的一部分:生物特征的化学,物理和机械性能,1个腐蚀和在生物医学领域的应用。基本的生物量表将为1个解释,但是主要重点将放在先进的处理上,包括3d 1打印技术和高级生物识别符,例如Shape-Memory Alloys,Bio-1可吸收金属等。
通过上转换的能量光子。敏化剂通常被共掺入UCNP,以吸收激发辐射并将能量传递到激活剂中。众所周知,在合成过程中,必须仔细控制宿主晶格中活化剂离子的浓度,以避免交叉删除并保持高且高转换的效率。增加UCNP中的感应离子浓度可以提高光子的吸收能力,从而增强上转换Lumine-Scence(UCL)。4然而,超出一定阈值(1-5 mol%),敏化器离子浓度的任何进一步增加都将导致发光强度显着降低。5这种现象通常被称为“浓度淬火”。6此外,增加UCNP中植物掺杂的灯笼离子的浓度可能会导致颗粒内部更具内部的能量传递过程,从而导致较高的能量向表面散发,并且这种现象通常称为表面淬火。浓度淬灭效应也与表面淬火紧密耦合。5由于表面淬火和浓度淬灭,UCNP的量子产率(QY)较低。然而,不同的核心 - 壳结构旨在提高UCL强度和UCNP的QY。惰性壳,例如Nayf 4,Nagdf 4或CAF 2,可以钝化表面缺陷并减少表面淬火。另一方面,可以构建活性壳以将较高的敏化剂浓度分散在不同的层中并减少集中猝灭。7,8同时构建核心 - shell
摘要。生物材料对于神经接口(包括脑机接口)的发展至关重要。生物材料方法可改善神经接口的功能性、兼容性和寿命,从而实现脑机通信。对脑电极阵列、神经探针和植入式设备中使用的生物材料的广泛研究依赖于材料如何影响神经信号记录、刺激和组织接触。它还研究了生物材料、生物电子学和 3D 打印如何改善神经接口。生物材料调节神经炎症反应,增强脑组织再生,并延长神经接口寿命。这项研究展示了基于生物材料的神经接口在神经假体、神经康复和基础神经科学研究中的改变潜力,满足了脑机关系和神经技术创新的需求。这些发现表明,扩大生物材料的研究和开发,以推进和维持神经接口技术以供未来使用。
相容性,它们在动脉中的永久存在加上缺乏健康的保护性内皮可能会导致不良的生物学效应。1金属表面电荷和润湿性会影响蛋白质的吸附行为,从而可能发生蛋白质变性,最终导致凝血和血栓形成。聚合物涂层支架主要是疏水性的,降解时会分层,使下面的金属暴露在外。2药物洗脱支架上装有抗增殖药物,以避免平滑肌细胞(SMC)过度增殖和潜在的再狭窄。然而,这些药物也会抑制内皮细胞(EC)增殖,因此对功能性内皮的最终恢复产生不利影响。3,4此外,新开发的生物可吸收支架(BRS)呈现高支柱轮廓,与血流湍流增加和血小板沉积有关,导致装置血栓形成的风险更高。 5 – 7 因此,只有同时区分 EC 反应和 SMC 反应并确保设备血液相容性,才能改善支架的临床性能。† 提供电子补充信息 (ESI)。请参阅 DOI:https://doi.org/ 10.1039/d3bm00458a
摘要。用于形成人造器官和类器官的生物材料的技术发展表明生物医学工程和再生医学领域的革命区域。这项研究对生物材料的最新进展进行了深入的评论,强调了它们的设计和用于制造人造器官和器官的设计。进行分析以检查模拟局部组织的生物学和生物力学品质的生物材料的必要参数。下一步的努力将变成合成和表征创新的生物材料,包括生物相容性聚合物,水凝胶和生物活性支架,可定制以适合特定器官系统。本文对3D生物印刷和微加工技术的发展提供了深入的看法,强调了它们如何促进复杂的多细胞结构的合成。研究还研究了与干细胞技术结合使用生物材料的整合,重点是它们在形成器官中的作用以及定制医疗治疗的前景。本评论强调了该领域取得的重大发展以及这些技术在解决器官供应有限,进行药物测试以及改善对器官和疾病生长的知识方面的潜力。
在过去的几十年中,治疗遗传疾病、神经病、癌症和病毒感染的分子疗法取得了重大突破。这些治疗方法利用分子探针(即小干扰 RNA(siRNA)、反义寡核苷酸 (ASO) 和信使 RNA (mRNA))在基因层面上作用以删除、替换或改变特定基因的表达,最终目的是提供更有效、更持久的治疗。1 随着美国食品药品监督管理局 (FDA) 批准米泊美生钠 (Kynamro™) (2013),2 一种用于治疗转甲状腺素蛋白淀粉样变性 (ATTR) 的第二代 ASO 疗法,人们在设计可提高这些分子探针的生物利用度并促进其临床转化的载体方面做出了巨大努力。这反过来又刺激了目前正在临床上使用的不同基因药物的开发 3,4 ,包括最近批准的疫苗 5 - 8
描述,验证和存档作为这些数据来源的生物材料。如果尚未减弱,这种趋势可能会对自然科学产生严重的影响。为关键实际目的而开发了标本管理的传统实践,以提供高质量的,最小化的生物材料进行研究,确保开放访问这些材料,保留这些材料进行重新分析和重新评估,并在这些材料及其环境文本之间保持牢固的联系。从历史上看,这些做法呼吁搜索者将适当保存的原始材料存入公共收藏中(例如博物馆,植物园,动物园等)以及有关其收集方法及其获得的地点的详细信息。这特别是
前言。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。ix
支架,关节和牙科植入物,骨科固定装置,内部支撑以及生物组织的替代只是广泛依赖生物材料的许多医学应用中的少数。在这些应用中,生物材料经常经历带有摩擦学相互作用的机械力。影响这些材料的长期性能和耐用性的主要因素之一是它们的摩擦学特征,其中包括摩擦行为,润滑和耐磨性。已经进行了许多研究,以理解当前情况下开发的创新生物材料的机械性能。但是,迫切需要进一步调查其摩擦学特性以确认其适合医疗应用的性能。关于在各种功能条件下(包括负载,反体性能,持续时间,尤其是润滑培养基)的生物材料摩擦学评估的文献不足。本研究主题的主要目的是阐明生物材料摩擦学特性研究中的最新发展,为研究人员提供了一个论坛,以分享其最新发现,详尽的评论,方法论的进步和示例性案例研究,以“生物材料的摩擦学行为”领域的特定领域。本研究主题侧重于(Abakay等人)当前对生物材料磨损的理解,(Imran等人)其机械微结构和摩擦学行为之间的关系,以及(Ouerfelli等); Imran等。; Ouerfelli等。生物材料的摩擦学行为的最新进展。研究主题的结构是为生物材料的研究人员提供一个平台,具有三个核心贡献(Abakay等人)。