在这项工作中,具有纳米特征的纳米结构导电膜是通过激光组装而直接产生的,并将其整合到完整的硝基纤维素传感器中。纤维素底物允许托管活细胞,而纳米结构膜的纳米酶活性可确保sames释放的无酶实时检测过氧化氢(H 2 O 2)。详细说明,使用CO 2 -Raser绘图仪通过同时还原和模式的氧化石墨烯和铂阳离子来生产高度去角质的氧化石墨烯3D膜3D膜,该薄膜用裸铂纳米烟饰面。将纳米结构膜集成到硝酸纤维素底物中,并使用负担得起的半自动打印方法制造完整的传感器。直接H 2 O 2测定的线性范围为0.5 - 80μm(r 2 = 0.9943),检测到0.2μM。实时细胞测量值是通过将传感器放置在培养基中,确保其在传感器表面上的粘附;两种细胞系分别用作非肿瘤(VERO细胞)和肿瘤(SKBR3细胞)模型。对用佛波酯刺激细胞释放的H 2 O 2的实时检测;硝酸纤维素传感器返回了有关H 2 O 2的现场和实时定量信息,以证明有用的灵敏度和选择性,从而区分了肿瘤细胞。提出的策略允许使用简单的台式仪器进行低成本的串行串行序列半自动生产,从而铺平了对癌细胞细胞病理学状态的简单且负担得起的监测的道路。
用于汗水分析的可穿戴设备的开发在过去的两次中已经显着增长,这是锻炼过程中对运动员健康的主要重点。这些方法的主要挑战之一是在1小时以内对汗水进行持续监测。这是设计通过设计一个分析平台来解决的主要挑战,该平台结合了电位测量传感器的高性能和由塑料织物制成的流体结构,并将其与多路复用的可穿戴设备相结合。该平台包括对硅上生产的离子敏感晶体管(ISFET),量身定制的固态参考电极以及集成到类似斑块的聚合物底物中的温度传感器,以及在连续流向传感器区域的连续毛细管下轻松收集和驱动样品的组件。用于测量pH,钠和钾离子的ISFET传感器在人工汗液溶液中充分表征,提供可重复且稳定的反应。然后,通过将85分钟连续运动期间记录的ISFET响应与使用商业离子选择性电极(ISES)测量的浓度值进行比较,在某些时间收集的样品中,评估了对汗水中的生物标记物与可穿戴平台的实时和连续监测。开发的感应平台构成了对生物标志物的持续监测,并促进了对目标生物标志物浓度水平的各种实际工作条件(例如循环功率和皮肤温度)的影响的研究。
微流体设备在文献中越来越广泛地广泛应用于众多令人兴奋的应用,从化学研究到护理设备,通过药物开发和临床方案。但是,设置这些微环境,引入了局部控制所研究现象所涉及的变量的必要性。因此,文献深入探讨了引入感应元素以研究微流体设备内部的物理量和生化浓度的可能性。生物传感器,特别是其高精度,选择性和响应性而闻名。但是,他们的信号可能具有挑战性的解释,必须仔细分析以执行正确的信息。此外,已经证明了适当的数据分析,即使是为了提高生物传感器的质量。在这方面,机器学习算法无疑是从事这项工作的最合适的方法之一,自动从数据中学习并强调生物传感器信号的特性充其量。有趣的是,它也被证明可以使微流体设备本身受益,这是一种新的范式,即文献开始命名“智能的微流体学”,理想情况下可以在这些学科中结束这种有益的互动。本综述旨在证明三合会微流体 - 生物传感器计算学习的优势,该学习仍然很少使用,但具有很好的视角。简要描述了单个实体后,不同的部分将证明双重相互作用的好处,并强调采用了审查的三合会范式的应用。
医疗技术的进步始终在增强医疗结果方面发挥了关键作用。生物传感器和纳米诊断者代表了尖端科学符合实用医疗解决方案的边界。这些技术利用纳米技术的原理开发可以以前所未有的准确性和效率来检测特定的生物学标记的设备。生物传感器是分析设备,将生物成分与物理检测器结合在一起,以识别和量化生物学元素。生物学成分,通常是一种酶,抗体或核酸,与靶性生物分子相互作用,触发可测量的信号。生物学和技术的这种整合已经在各种领域发现了应用,医疗保健是主要受益人。生物传感器的灵敏度允许检测与各种疾病相关的生物标志物,浓度非常低。从糖尿病患者的葡萄糖监测到癌症生物标志物检测,生物传感器正在彻底改变诊断。这些设备正成为个性化医学不可或缺的一部分,并根据个人的独特分子概况来调整治疗方法[1]。
Rona Chandrawati,UNSW,澳大利亚,澳大利亚,UCL,UCL,UCL,UCL,MELPOMENI KALONOU,ITCOLE MCFARLANE,田纳西大学 - 诺克斯维尔大学 - 美国罗希特·斯里瓦斯特娃美国,美国大学,加泰罗尼亚大学纳米斯基和纳米技术(ICN2),西班牙梅赫迪·贾万玛德,美国德克萨斯州萨姆·马博特,德克萨斯州萨姆·马博特美国Ruchi Gupta,英国伯明翰,弗兰加尔,莱拉·索利马尼大学,加拿大麦克马斯特大学,加拿大麦克马斯特大学Sven Ingebrandt,亚兴大学,德国Xuexin 2,Tianjin,Tianjin,中国埃德姆Arzum,Ege University,Ege Universit
芬兰赫尔辛基。johan.bobacka@abo.fi 非侵入式体表化学传感能够持续追踪与人类健康和福祉至关重要的生物标志物。通过附着在人体皮肤上的化学传感器和生物传感器,可以非侵入式地获取有关各种分析物的信息。最常用的是电化学和光学转换方法。典型方法包括使用固体接触离子选择电极测定电解质(Na+、K+、Ca2+、Cl-)和 pH 值,以及使用基于酶的电流生物传感器测定葡萄糖和乳酸 [1]。当前,非侵入式化学传感研究主要集中在汗液分析上,汗液是一种容易获取的样本,因为它会自然从人体排泄,尤其是在体育锻炼过程中 [1]。在其他样本类型中,唾液和泪水受到的关注相对较少。人们投入了大量精力来测定间质液 (ISF) 中的葡萄糖。市面上可穿戴的持续血糖监测设备大多依靠插入皮肤或植入皮下的生物传感器来获取 ISF。从用户的角度来看,这仍然不是最佳选择,完全非侵入性的方法会更好。尽管人体皮肤具有出色的屏障性能,但利用反向离子电渗疗法无需对皮肤进行任何物理穿刺,就可以非侵入性地提取 ISF。此外,最近开发的磁流体动力学 (MHD) 采样方法被证明比传统的反向离子电渗疗法效率高 13 倍 [2, 3]。基于 MHD 技术的可穿戴非侵入性血糖监测仪在一项临床性能研究中与参考血糖测量值具有很强的相关性,该研究包括 100 多名成年参与者,提供了超过 900 个数据点,涵盖 4-26 mM 的葡萄糖浓度范围。在本演讲中,将简要概述非侵入性在体化学传感和生物传感,然后介绍基于 MHD 提取 ISF 的非侵入性血糖监测的具体示例。 Z. Boeva、Z. Mousavi、T. Sokalski、J. Bobacka、TrAC 趋势。肛门。化学。 172 (2024) 117542。 2. TA Hakala、A. García Pérez、M. Wardale、IA Ruuth、RT Vänskä、TA Nurminen、E. Kemp、ZA Boeva、J.-M。 Alakoskela,K. Pettersson-Fernholm,E. Haeggström,J. Bobacka,科学。报告 11 (2021) 7609。 3. E. Kemp、T. Palomäki、IA Ruuth、ZA Boeva、TA Nurminen、RT Vänskä、LK Zschaechner、A. García Pérez、TA Hakala、M. Wardale、E. Haeggström、J. Bobacka、Biosens。生物电子。 206(2022)114123。
电化学传感器和生物传感器代表了对复杂样品的负担得起,快速和分散测试的有前途的解决方案,即使对于那些进行最少训练的人也可以使用。它们具有粮食和环境分析的巨大潜力,但必须首先解决一些技术和商业挑战,以充分实现其收益。本期特刊的生物传感器,标题为“环境监测和食品安全传感器”,旨在展示此动态领域的最新进步。我们邀请您进行研究,以突出该领域的最新发展和应用。我们的重点包括电化学和非电化学传感器,利用经典和先进的技术,例如酶,抗体,DNA,适体,分子印刷聚合物和纳米技术。我们欢迎以评论,沟通和研究文章的形式提交。
生物传感器由于其众多好处,包括低成本,快速响应和高灵敏度,变得越来越有价值。要开发创新的生物传感器,除了常规专业之外,还需要跨学科的工作。本文提供了生物传感器的概述,并探讨了其工作原理和应用程序。生物传感器通过产生与分析物的吸收成正比的信号来测量生物学或化学反应。“生物传感器”一词是“生物”和“传感器”的组合。它由换能器和生物元素(例如酶或抗体)组成,该酶或抗体与分析物相互作用并产生电信号。生物传感器用于各种应用,包括疾病监测,药物发现,污染物检测等。生物传感器的设计通常包括分析物,生物感受器,换能器,电子设备和显示等组件。生物传感器使用信号转导将生物学变化作为电信号,结合了传感器和生物传感元件。这包括具有信号调节单元(SCU),微控制器/处理器和显示单元的电子电路。生物传感器分类为诸如在声音振动原理上工作的压电传感器等类型,并在机械施加时会产生电信号。这些传感器将机械振动更改为比例电信号。另一种类型是电化学传感器,它们在探测面上覆盖着生物分子,响应检测到的化合物并产生电信号。电化学传感器使用不同的传感器,例如安培,障碍物和电位计量学,将化学数据更改为可测量的信号。光学生物传感器涉及光纤,这些光纤检测基于吸收,散射或荧光等光特性的传感元件。这些传感器使用抗体,抗原,核酸,受体,组织和全细胞等生物学材料产生与分析物浓度成比例的信号。光学生物传感器提供实时,无标签和直接检测具有益处,较小的成本,敏感性和高特异性的化学和生物学物质。高级概念,例如微电子,MEMS,分子生物学,纳米或微技术,生物技术和化学,用于实施新的光学生物传感器。此外,生物传感器可以与微控制器连接,以监测由化学变化或不当储存条件引起的食物污染。使用生物传感器来监测食品质量并预防食物传播疾病食物传播疾病是由病毒和细菌引起的,导致几种类型的食物传播疾病。为了防止这种情况,必须设计系统以识别食品质量和新鲜度。该系统利用电气传感器和生物传感器,生物传感器在检测食品样品中的细菌污染中起关键作用。系统使用湿度,温度和光传感器等传感器监视食物。高温可以增加食物变质的风险,而高湿度水平可能会影响某些类型的食物的质量。食物阈值值设置为确定何时宠坏食物,考虑到湿度,温度和光线等因素。光在保存食物质量方面起着至关重要的作用,因为光线不足会导致变质。该系统还检查了从食物中发出的气体以检测变质的水平。使用气体传感器测量气体水平的数量,并转换为模拟值以在物联网平台上显示。所提出的系统由几个组件组成,包括电源单元(PSU),Wi-Fi调制解调器,Arduino微控制器,光依赖性电阻器(LDR),气体传感器,数字温度和湿度传感器(DTH11)和液晶显示器(LCDS)。Arduino Uno板使用带有14个数字I/O引脚,6个PWM输出和6个模拟输入的Microchip Atmega328p微控制器。该系统利用物联网来监视影响食物存储的环境因素,从而实现任何设备的实时数据传输。ESP8266模块连接到Arduino板和Wi-Fi路由器,在字符LCD上显示传感器数据。传感器测量温度(0-50°C)和相对湿度(20-95%),每两秒钟将数据传输到Internet。系统将传感器数据收集并将其转换为字符串,然后将其显示在LCD上。生物传感器的特征包括选择性,可重复性,稳定性,灵敏度和线性性。选择性使其可以在污染物中感知特定的分析物。可重现性可确保重复实验中的一致响应。线性表示响应直线信号的精度。稳定性受环境因素的影响,而灵敏度决定了检测到的分析物的最小量。生物传感器提供了快速,连续的测量,校准的最小试剂要求,快速响应时间以及检测非极性分子的能力。它可以通过将生物学信号转换为电子测量来检测人体内部危险的生物学剂或化学物质。这项技术负担得起,精确,小,生物相容性和可靠。但是,生物传感器的局限性,包括对某些目标的敏感性相对较差,提供了半定量或定性结果。增强检测极限需要进一步发展。放大生物信号的努力集中在增强其力量上。生物传感器的应用包括医疗测试,检测病原体以及通过追踪气体或污染物来监测水质。它们也用于生物浮雕技术,安全系统以及跟踪人体中的葡萄糖水平。此外,在农业和生物技术中应用生物传感器连续监测化学特性。在食品工业中,他们检测抗生素,农药,维生素和脂肪酸的水平。生物传感器是生物分析系统,通过将其信号转换为可计算的响应来识别生物样品。这些传感器是可以分析生物样品以识别其结构,组成和功能的强大设备。他们通过将生物信号转换为电响应来做到这一点。生物识别传感器是[插入定义或链接]。在医学和健康领域,生物传感器在检测生物学信号中发挥了重要作用。本教程将探讨生物传感器的概念,其工作原理,不同类型和常见应用。更深入研究之前,让我们回顾一下传感器的基础知识。传感器是一种检测体温或光强度等物理量变化并将其转换为可测量数量的设备。例如,根据环境光强度,光依赖性电阻(LDR)改变其电阻。同样,生物传感器将生物信号转换为电信号。本质上,生物传感器是一种分析装置,可检测生物学过程的变化并将其转化为电信号。在我们通过本教程前进时,必须了解生物信号的概念。生物传感器将生物传感元件与换能器结合在一起,以将数据转换为电信号。该系统由带有信号调节单元,处理器或微控制器的电子电路和显示单元组成。简化的框图显示了重要组件,包括用于信号调节的放大器和过滤器。生物传感器的原理涉及使用酶作为生物材料。一种电酶方法将酶通过换能器转化为电信号,通常通过氧化酶。此过程改变了生物材料的pH,影响了与测得的酶有关的酶的当前承载能力。传感器的输出是一个电信号,可以是电流或电压,具体取决于所使用的酶的类型。如果是电流,则需要使用基于操作AMP的转换器将其转换为等效电压。然后将所得的电压信号放大并通过低通RC滤波器过滤,以删除高频噪声。输出模拟信号表示要测量的生物学数量,可以直接显示或传递给微控制器进行数字转换。生物传感器的一个常见示例是糖仪,它通过在测试带上收集样品并将其转换为电信号来测量血糖水平。为了分析葡萄糖水平,传感器使用电酶方法,其中葡萄糖的氧化发生在含有触发和参考电极的测试带上。应用血液时,化学反应会产生与葡萄糖浓度成比例的电流。血糖仪具有处理器,转换器,放大器,过滤器和显示单元。生物传感器分为两组:用于实施分析或转导方法中的生物元素。常见的生物学元素包括DNA,酶,抗体,微生物,组织和细胞受体。生物传感器也可以根据所使用的转导类型进行分类:基于质量的,光学和电化学。基于质量的生物传感器包括压电生物传感器,它们将机械振动转换为电信号。生物分子附着在压电传感器的表面上。电化学生物传感器使用探测表面,其感应分子反应产生与测量量成比例的电信号。可以使用各种换能器,例如电位测量,安培计量学和受损。光学生物传感器利用光纤来检测由于折射率变化而引起的光吸收,散射或荧光等光特性的变化。例如,与金属层结合的抗体会导致培养基折射率的变化。注意:原始文本已维护,并且没有对其内容进行重大更改。光学生物传感器具有非电信性质,使它们能够通过改变光波长在单层上分析多个元素。生物传感器在1950年代初期开发以来,生物传感器在医学,临床分析和健康监测方面至关重要。他们提供了比基于实验室的设备的几个优点:尺寸小,低成本,快速效果和易用性。生物传感器还发现了在工业加工,农业,食品加工,污染控制等领域的应用。关键领域包括医学,临床诊断,环境监测,工业过程,食品工业和农业实践。在医学和诊断中,生物传感器用于监测葡萄糖水平和乳酸,商业生物传感器在自我监测的血糖中流行。这些设备提供未稀释的样品,以获得准确的结果和可重复使用的传感器,以改善患者护理。通过监测细菌和细胞培养,这有助于最大程度地降低成本和风险。环境监测是生物传感器的另一个重要应用,尤其是在水污染检测中具有很大优势。生物传感器可以检测硝酸盐和磷酸盐,有助于对抗地下水污染并确保安全的饮用水质量。在工业应用中,生物传感器用于监测乳制品,酒精生产和类似行业的发酵过程。食品工业还利用生物传感器来测量碳水化合物,酸,酒精和其他物质来控制食品质量。一些常见的例子包括葡萄酒,啤酒,酸奶,软饮料等。最后,农业在各种实践中使用生物传感器,例如作物管理,土壤分析和动物健康监测。农药通常是农业环境中的重要工具,主要用于检测其存在。