摘要 - 双方机器人由于其拟人化设计,在各种应用中提供了巨大的潜力,但其结构的复杂性阻碍了它们的控制。当前,大多数研究都集中在基于本体感受的方法上,这些方法缺乏克服复杂地形的能力。虽然视觉感知对于在以人为中心的环境中运作至关重要,但其整合使控制进一步复杂化。最近的强化学习(RL)方法已经显示出在增强腿部机器人运动方面的希望,特别是基于本体感受的方法。然而,地形适应性,尤其是对于两足机器人,仍然是一个重大挑战,大多数研究都集中在平坦的情况下。在本文中,我们介绍了专家教师网络RL策略的新型混合物,该策略通过一种简单而有效的方法来增强基于视觉投入的教师策略的绩效。我们的方法将地形选择策略与教师政策结合在一起,与传统模型相比,表现出色。此外,我们还引入了教师和学生网络之间的一致性损失,而不是强制实施相似之处,以提高学生驾驶各种地形的能力。我们在Limx Dynamic P1 Bipedal机器人上实验验证了我们的方法,证明了其跨毛线地形类型的可行性和鲁棒性。索引术语 - Bipedal机器人,增强学习,视觉感知的控制
摘要 - 本文提出了一种在线两足动物的脚步计划策略,该策略结合了模型预测性控制(MPC)和增强学习(RL),以实现敏捷且健壮的两足动物。基于MPC的脚部放置控制器已经证明了它们在实现动态运动方面的有效性,但它们的性能通常受到使用简化模型和假设的限制。为了应对这一挑战,我们开发了一个新颖的脚放置控制器,该控制器利用了一项学识渊博的政策来弥合使用简化模型和更复杂的全阶机器人系统之间的差距。具体来说,我们的方法采用了基于ALIP的MPC脚部放置控制器的独特组合,用于次级脚步计划,并提供了精炼脚步调整的学习政策,从而使所得的脚步策略有效地捕获了机器人的全身动态。这种集成协同MPC的预测能力,其灵活性和适应性能力。我们通过使用全身人形机器人Draco3。结果表明,动态运动性能的显着改善,包括更好地跟踪各种步行速度,使可靠的转弯和穿越具有挑战性的地形,同时与基线ALIP ALIP ALIP MPC接近相比,保持步行步态的稳健性和稳定性。
摘要 - 在机器人运动过程中以不同速度识别基础表面对于安全有效的机器人导航很重要。这项工作旨在通过在每脚下方固定的力传感器来识别多个室内表面,同时以不同的速度导航,从而增强了双子机器人的感知能力。通过将实时多对象支持向量机(SVM)与有效的时域功能相结合,提出了一种机器人的准确但成本较固的表面标识系统。在这种情况下,研究了四个有希望的手工制作的时域特征,其中均方根(RMS)功能被证明超过了其他三个功能。可以通过分别以两个不同的步行速度应用RMS来实现十倍SVM交叉验证中95.99%和98.16%的平均平均精度(地图)。具有较高的计算效率可以实现高分类精度,因此可以在诸如Arduino或Jetson Nano之类的低成本平台上进行系统部署,这使我们的方法适合在各种步行速度之间进行广泛应用。
摘要 - 本文介绍了一项有关使用深钢筋学习(RL)为双皮亚机器人创建动态运动控制器的综合研究。超越了关注单个运动技能的关注,我们开发了一种通用控制解决方案,该解决方案可用于一系列动态的两足动物技能,从定期步行和跑步到Aperiodic的跳跃和站立。我们的基于RL的控制器结合了一种新颖的双历史结构,利用了机器人的长期和短期输入/输出(I/O)历史记录。通过拟议的端到端RL方法进行培训时,这种控制架构始终优于模拟和现实世界中各种技能的其他方法。该研究还深入研究了拟议的RL系统在开发运动控制器时引入的适应性和鲁棒性。我们证明,提出的体系结构可以通过有效使用机器人的I/O历史记录来适应时间不变的动态变化和时间变化的变化,例如接触事件。此外,我们将任务随机化确定为鲁棒性的另一个关键来源,促进了更好的任务概括和对干扰的依从性。可以成功部署所得控制的控制策略,这是一种扭矩控制的人尺寸的两头机器人。这项工作通过广泛的现实世界实验推动了双皮亚机器人的敏捷性限制。我们展示了各种各样的运动技能,包括:坚固的站立,多功能步行,快速跑步,展示了400米仪表板,以及各种各样的跳跃技能,例如站立的跳远和跳高。
本文通过模仿动作捕获剪辑来深入研究向机器人和虚拟特征教授高度动态技能的重要领域,这一问题弥合了人类专业知识和机器人的能力之间的鸿沟。它首先仔细检查了当前方法的优势和劣势,引起了他们对复杂,敏捷运动的斗争的关注,并具有适应各种情况的灵活性。基于深度学习,强化学习(RL)和模仿学习的最新进展,我们基于深度限制,以结合这些技术,以优化控制政策,并促进更加敏感,多样化和适应能力的动态技能。我们使用深度关系的运动夹数据来策划我们的方法,并成功地将其部署在Bob Biped机器人上,以进行各种动作,例如步行,跑步和跳跃。此外,还提出了一种课程培训策略,以将我们的算法的适用性扩展到具有不同形状,群众和动力学模型的各种双层机器人,从而推动了机器人技术和现实应用程序的创新。我们的代码和演示可在https://github.com/xiyichen/dh-project上公开获得。
大脑皮层在人类和其他动物对不可预测的地形变化的适应性中起着重要作用,但是在此过程中,皮质区域之间的功能网络知之甚少。为了解决这个问题,我们训练了6只老鼠,视力阻塞,在带有不平衡区域的跑步机上双胎行走。全脑电脑电图信号通过32通道植入电极记录。之后,我们使用时间窗口扫描所有大鼠的信号,并使用相位延迟索引量化每个窗口中的功能连接。最后,使用机器学习算法来验证在检测大鼠运动状态时动态网络分析的可能性。我们发现,与步行阶段相比,在制备阶段的功能连接水平更高。此外,皮质更加注意控制肌肉活动需求更高的后肢的控制。功能连接的水平较低,可以预测前方的地形。大鼠意外地与不均匀的地形接触后的功能连通性突发,而在随后的运动中,它明显低于正常行走。另外,分类结果表明,使用多个步态阶段的相位延迟指数作为特征可以有效地检测步行过程中大鼠的运动状态。这些结果突出了皮质在动物对意外地形适应中的作用,并可能有助于推进运动控制研究和神经植物的设计。