d28 Maja Kadic Tushara Sadasivuni病毒化Maximilian Arendale,Brandon Chung,Peter Kim,Aneesh Pallapolu D29 Newton Pham Tushara Sadasivuni和In-In Invan Loh,Nethmee Perara dawawate。 Christian Spencer,Abraham Ochoa D30 Komal Ganta Tushara Sadasivuni Tessrae(Scrambler密码)KOI Steward,Junyeong哦,Yesenia Hurtado,Julian Hernandez D31 Joshua投票移动应用程序Osaid Zeyad,Trinity Gordon,Jared Stewart,Andy Kang D32 James Parker Tushara Sadasivuni政策政策投票移动应用程序Kamil Elwawi,Khang Truong,Sofia Lug-Bob-Bobonilla,Christophler, D33 Steven Ton Tushara Sadasivuni TimeSync Abdul Fawy, Aqra Qadeer, Dylan Trejo, Elaf Mustafa, Lorry Hoang D34 Zian Chowdhury Tushara Sadasivuni Care Hub Ngoc Minh Thy Nguyen, Steven Tea,Andy Ha,Abdul-Malik Mohammed D35 Richard Duel Tushara sadasivuni预算叮咬Anvar Suleyman,Zoe Cryton,Christopher Baez,Joe Yonathan,Mitchell Bailey Bailey D36 Ritik Patela Tushara Tushara Tushara Sadla废料Ri Merritt,Jae Jeong,Ryan Tran,Robbie Jr Owivry D37 Karrim Muhammad
摘要:神经内分泌肿瘤 (NET) 是一种异质性肿瘤,由于其相对惰性,发病率和患病率不断上升。它们解剖分布广泛,并具有分泌激素活性物质的特征,给临床治疗带来了独特的挑战。它们还具有共同表达生长抑素受体的特征,而生长抑素受体是诊断和治疗极为有用的靶点(即生长抑素类似物 (SSA) 和肽受体放射性核素治疗 (PRRT))。化疗对非胰腺来源的 NET 的作用有限,目前唯一获批用于晚期进展性 NET 的靶向药物是用于胰腺来源的舒尼替尼,以及用于肺、胃肠道和胰腺原发部位的依维莫司。因此,尽管最近在治疗方面取得了进展,但全身治疗选择仍然有限。在本综述中,我们将讨论 NET 领域的最新靶向治疗方法,以及临床开发中新型治疗药物或策略的未来前景,包括最近呈现的尚未批准的抗血管生成药物(即帕唑帕尼、索凡替尼和阿昔替尼)随机试验的结果、PRRT(包括已批准的放射性药物(177Lu-Oxodotreotide)和其他正在开发中的药物(177Lu-Edotreotide、177Lu-Satoreotide Tetraxetan)、免疫疗法和其他创新的靶向策略(抗体-药物偶联物、咬合等),这些将很快改善 NET 患者个性化治疗方案的前景。
近年来,多发性骨髓瘤 (MM) 的治疗策略全面进步 ( 1 )。上世纪下半叶,美法仑化疗联合泼尼松或地塞米松等激素药物是 MM 的基本治疗方案 ( 2 )。后来,随着蛋白酶体抑制剂 (PI) 和免疫调节药物 (IMiD) 的广泛应用,MM 患者的预后得到显著改善。自靶向单克隆抗体 (mAb) 的发现对 MM 具有良好的疗效 ( 3 , 4 ) 以来,MM 的治疗已转向多种免疫疗法,而其中最突出的无疑是靶向免疫疗法。 B细胞成熟抗原(BCMA/CD269)属于TNF受体超家族成员17( 5 ),在MM细胞表面有高度选择性地表达,是目前针对MM患者研究的大多数靶向药物的理想靶点( 6 ),例如抗BCMA mAb、抗体-药物偶联物(ADC)、双特异性T细胞接合剂(BiTE)以及针对BCMA的过继细胞疗法,如嵌合抗原受体(CAR)-T细胞(图1)。基于大量的临床前和临床试验,有关这些靶向免疫治疗产品的疗效和安全性的数据已变得更加全面。第63届美国血液学会(ASH)年会向我们展示了多种抗BCMA免疫疗法的最新进展。本综述旨在总结此次会议关于BCMA在MM中应用的一些要点,特别关注临床成果。
摘要:tick传播脑炎(TBE)是中枢神经系统的传染病。病因是tick传播的脑炎病毒(TBEV),最常见的是滴答叮咬传播,但也可以通过消耗原始乳制品或在极少数情况下通过感染的输血,移植剂或受感染动物的屠杀而传播。唯一有效的预防选择是主动免疫。目前,欧洲有两种疫苗可供选择-Eccepur®和FSME-Immun®。在中部,东部和北欧,孤立的TBEV基因型主要属于欧洲亚型(TBEV-EU)。在这项研究中,我们研究了这两种疫苗对来自德国南部南部地区和邻国地区的特有区域的各种天然TBEV-eu分离株诱导中和抗体的能力。血清的33个供体的供体接种了FSME-IMMUN®,ENCEPUR®或两者的混合物,以16 TBEV-EU菌株进行了测试。TBEV-EU基因组的系统发育分析揭示了鉴定出的13个基因型进化枝的实质性遗传多样性和血统。尽管所有血清都能够中和TBEV-eu菌株,但各个疫苗接种组之间存在显着差异。中和测定法表明,使用两个不同疫苗品牌的疫苗接种显着增加中和滴度,减少了杂物内方差,并减少了病毒间变异。
蜱传脑炎疫苗(全病毒灭活) 在您或您的孩子接种此疫苗之前,请仔细阅读本说明书的全部内容,因为其中包含对您或您的孩子很重要的信息。 请保留本说明书。您可能需要再次阅读。 如果您有任何其他问题,请咨询您的医生、药剂师或护士。 此疫苗仅供您或您的孩子使用。请勿将其传给他人。 如果您或您的孩子出现任何副作用,请咨询您的医生、药剂师或护士。这包括本说明书中未列出的任何可能的副作用。请参阅第 4 节。 本宣传册包含的内容 1. FSME-IMMUN 0.25 ml Junior 是什么以及它用于什么 2. 在您或您的孩子接种 FSME-IMMUN 0.25 ml Junior 之前您需要知道什么 3. 如何接种 FSME-IMMUN 0.25 ml Junior 4. 可能的副作用 5. 如何储存 FSME-IMMUN 0.25 ml Junior 6. 包装内容和其他信息 1. FSME-IMMUN 0.25 ml Junior 是什么以及它用于什么 FSME-IMMUN 0.25 ml Junior 是一种疫苗,用于预防蜱传脑炎 (TBE) 病毒引起的疾病。 它适用于 1 至 15 岁以上的儿童。 疫苗可使身体产生自身的保护作用(抗体)来对抗病毒。 它无法预防可能导致类似症状的其他病毒和细菌(其中一些也通过蜱叮咬传播)。蜱传脑炎病毒可导致非常严重的脑部或脊柱及其覆盖物感染。这些感染通常以头痛和高烧开始。在有些人中,在最严重的情况下,感染会发展为失去意识、昏迷和死亡。蜱虫可携带这种病毒。它通过蜱虫叮咬传播给人。在欧洲大部分地区以及中亚和东亚,被携带病毒的蜱虫叮咬的几率非常高。在这些地区居住或度假的人有感染蜱传脑炎的风险。蜱虫并不总是出现在皮肤上,叮咬可能不被注意到。 与所有疫苗一样,这种疫苗可能无法完全保护所有接种疫苗的人。 单剂疫苗不太可能保护您或您的孩子免受感染。您或您的孩子需要接种 3 剂(更多信息请参阅第 3 节)才能获得最佳保护。 保护不会持续一生。需要定期加强剂量(更多信息请参阅第 3 节) 没有关于暴露后预防(蜱叮咬后接种疫苗)的数据 2. 您或您的孩子在接种 FSME-IMMUN 0.25 ml Junior 之前需要了解的内容 请勿使用 FSME-IMMUN 0.25 ml Junior: 如果您或您的孩子对活性物质、任何其他成分(列于第 6 节)、甲醛或硫酸鱼精蛋白(在制造过程中使用)或抗生素(如新霉素和庆大霉素)过敏。例如,您或您的孩子出现皮疹、肿胀
摘要 药物分子进入临床试验后,主要有三个杠杆来提高成功率:患者选择、剂量选择和联合药物选择。其中,尽管有大量同行评审的出版物,剂量选择仍然是肿瘤药物开发中一个被低估的方面。在这里,我们分享生物制药行业面临的实际挑战,这些挑战降低了投资肿瘤药物剂量探索的意愿。首先,随机剂量探索无疑会减慢临床开发的速度。为了缩小剂量探索研究的规模,可以评估暴露趋势与肿瘤大小分析,而不是对多种剂量之间的非劣效性进行统计检验。其次,当较高剂量的效益风险足以获得监管部门批准(即较高剂量的疗效优于标准治疗且安全性可接受)时,投资测试较低剂量被认为是低优先级。必须考虑改变监管环境以优化上市前剂量,因为上市后剂量的变化可能会产生商业成本。第三,应科学评估患者接受较低剂量亚治疗暴露的风险,而不是假设剂量和疗效之间存在单调关系。在 1b/2 期临床试验中,只应研究预计达到剂量/暴露-反应曲线平台期的剂量。总体而言,要改变阻碍肿瘤学剂量探索投资的观念,需要生物制药行业、监管机构和学术界进行务实的讨论。这些观念也不应该阻碍最近出现的治疗模式(包括 BITE 和 CART 细胞疗法)的剂量探索。
目的:狂犬病是一种致命但可预防的疾病,具有适当的暴露前抗野合Vac Cination(ARV)。作为家庭宠物和流浪者,狗是放松的水库和矢量,在过去的几年中,斯里兰卡的人类狂犬病病例一直与狗叮咬有关。但是,其他与人类频繁接触的易感物种可能是感染的根源。这样的物种就是绵羊,ARV之后的免疫力从未在斯里兰卡饲养的绵羊中进行测试。材料和方法:我们已经测试了来自动物中心饲养的绵羊,斯里兰卡医学研究所的血清样品,用于ARV后存在抗野兽抗体。绵羊血清样品,在斯里兰卡首次使用的抗体试剂盒进行了测试,我们的结果通过细胞的血清核化方法进行了验证(Fluorescent抗体病毒中性测试,FAVN TEST,FLAVN TESTIPARTIAL,FAVN TESTERMIADIAD,FLAVN ANTICELED,FLAVN ANTICEL ANTICE ANTICY ORMAGISTER WORMATER WORMATER ARMYSTION和WORMETH WOLL WORMATHISS。结果:绵羊每年接受ARV,并在其血清中保持高中和抗体滴度。在6个月大的羔羊中未检测到孕产妇抗体。ELISA和FAVN测试之间的一致性,即系数一致性为83.87%。结论:通过测量抗兔抗体反应的测量,绵羊的年度疫苗接种对维持对狂犬病的充分保护有效。羔羊需要在6个月大的时间内进行淡化,以实现其血清中和中和抗体的保护水平。在斯里兰卡引入此ELISA将是确定动物血清样品中抗兔抗体水平的好机会。
了解介导疟疾保护的免疫机制对于改善疫苗发育至关重要。采用辐射衰减的恶性疟原虫孢子(PFRAS)疫苗接种可诱导对疟疾的高水平灭菌免疫力,并作为研究保护机制的有价值的工具。为了识别疟疾感染期间疫苗诱导的和检测相关的反应,我们对全血和PBMC进行了转录组分析,并从志愿者中对PFFRAS或非感染蚊虫的PBMC进行了深入的细胞分析,随后受控了人类疟疾感染(CHMI)。对模拟疫苗接种个体中CHMI的细胞亚群的深入单细胞分析表现出主要的炎症转录组反应。 全血转录组分析表明,在CHMI之前,与I型和II型干扰素和NK细胞反应相关的基因集增加了,而在受保护的疫苗中CHMI后一天,T和B细胞特征最早减少了。 相比之下,非保护疫苗和模拟疫苗接种的个体在CHMI之后表现出共享的转换变化,其特征是先天细胞的签名和炎症反应减少。 此外,免疫表型数据显示了VΔ2+γδT细胞,CD56+ CD8+ T效应记忆(TEM)细胞以及受保护的疫苗和发展血液阶段寄生虫之间的个体之间的非经典单核细胞的诱导谱,此后,感染了感染。 我们的数据提供了PFRAS诱导的保护和感染性CHMI的理解免疫机械途径的关键见解。对模拟疫苗接种个体中CHMI的细胞亚群的深入单细胞分析表现出主要的炎症转录组反应。全血转录组分析表明,在CHMI之前,与I型和II型干扰素和NK细胞反应相关的基因集增加了,而在受保护的疫苗中CHMI后一天,T和B细胞特征最早减少了。相比之下,非保护疫苗和模拟疫苗接种的个体在CHMI之后表现出共享的转换变化,其特征是先天细胞的签名和炎症反应减少。此外,免疫表型数据显示了VΔ2+γδT细胞,CD56+ CD8+ T效应记忆(TEM)细胞以及受保护的疫苗和发展血液阶段寄生虫之间的个体之间的非经典单核细胞的诱导谱,此后,感染了感染。我们的数据提供了PFRAS诱导的保护和感染性CHMI的理解免疫机械途径的关键见解。我们证明了疫苗诱导的免疫反应是在受pfras和非保护疫苗之间的异质性,并且PFRAS诱导的麦芽膜保护与干扰素,NK细胞和适应性免疫反应的早期和快速变化相关。试验注册:ClinicalTrials.gov NCT01994525。
蜱和蜱传疾病影响着全球动物和人类的健康,造成了重大的经济损失。例如,仅莱姆病一项,每年就给美国的直接医疗费用造成约 13 亿美元(蜱传疾病工作组)。蜱的生命周期始于一个卵,卵内含有正在发育的胚胎,胚胎孵化为幼虫。蜱在幼虫和若虫阶段的每个阶段都需要吸一次血,成年雌性最后一次大量吸血才能发育成卵块,完成整个生命周期。蜱的生命周期与吸血性昆虫大不相同,吸血性昆虫通常只有成年昆虫(通常只有雌性)以脊椎动物的血液为食,因此只有成年昆虫才能传播受感染动物的疾病。相比之下,蜱在其生命周期的所有阶段都是专性吸血动物,这使得它们能够在各个生命阶段传播病原体。蜱虫可以传播许多病原体:细菌、病毒、原生动物和真菌(Jongejan 和 Uilenberg,2004 年;Rochlin 和 Toledo,2020 年)。莱姆病的病原体伯氏疏螺旋体是硬蜱传播的最重要病原体之一。然而,其他几种蜱传播的病原体对人类和动物健康也至关重要(Eisen 和 Eisen,2018 年)。此外,由于蜱虫会长时间(3-10 天)进食,它会与脊椎动物宿主相互作用,并可能抑制宿主的免疫系统。蜱虫除了是病原体的载体之外,还会因长时间吸食宿主而对宿主造成重大伤害:蜱虫感染率高时会导致失血,叮咬部位会继发感染(Eisen and Eisen,2018),蜱虫在脊髓附近吸食时会导致麻痹(Pienaar et al., 2018),以及对蜱虫叮咬的反应,如 alpha-gal 综合征(Commins and Platts-Mills,2013;
CD19 导向的嵌合抗原受体 (CAR) T 细胞疗法彻底改变了 B 细胞急性淋巴细胞白血病 (B-ALL) 患者的治疗。在肿瘤临床试验中,早期临床开发同时在儿童和成人中进行,这在有些肿瘤临床试验中是独一无二的。然而,在随后的几年里,复发/难治性 (r/r) 恶性肿瘤的成年患者数量不断增加,导致多种针对各种恶性肿瘤的 CAR T 细胞产品的开发加速,目前已有六种 CAR T 细胞产品获得 FDA 批准用于成人患者。相比之下,FDA 仅批准一种用于儿科患者的 CAR-T 细胞疗法:tisagenlecleucel,该疗法获批用于 ≤ 25 岁的难治性 B 细胞前体 ALL 患者或第二次或以后复发的 B 细胞 ALL 患者。 Tisagenlecleucel 也在对复发/难治性 B 细胞非霍奇金淋巴瘤的儿科患者进行评估,但尚未获批用于此适应症。所有其他经 FDA 批准的适用于成人患者的 CD19 导向 CAR-T 细胞疗法(axicabtagene ciloleucel、brexucabtagene autoleucel 和 lisocabtagene maraleucel)目前正在对儿童进行研究,有些病例已获得初步结果。随着数据量和复杂性不断增长,快速吸收和实施这些数据的必要性也在增加。在考虑“非典型”情况时尤其如此,例如当患者与关键临床试验中纳入的患者特征不完全一致时,或者当还有其他治疗方案(例如造血干细胞移植 (HSCT) 或双特异性 T 细胞接合器 (BITE))可用时。因此,我们对目前有关在儿科患者中使用 CD19 靶向 CAR-T 细胞疗法的文献进行了相关总结,并试图为寻求有关特定临床情况的更多数据的临床医生提供指导。