抽象的传统制造行业目前沉浸在自动化过程中,集成了新技术和工具,这是由生产商要求改善制造过程以及员工工作条件的需求所驱动的。对于鞋类行业来说,粘合是在制造过程中的关键操作,在该过程中,外底被组装到持久的鞋子上。但是,在此操作中,工人通常会受到危险物质(即有机溶剂)的危害,并执行具有有限附加值的重复任务。在这种背景下,本文描述了一个研究项目的结果,其目的是从分析的不同技术中获得最大收益,例如协作机器人技术,人造视觉和多机器人控制,以操纵灵活/可变形物体。该项目的主要结果是在生产线中引入的鞋子粘合机机器人工作栏,以完全自动化操作。此工作电池集成了三个协作机器人,一个用于(热融化)粘合剂应用,另外两个则与两指电动握把,以同步进行粘合。也已嵌入了不同的视力系统以进行所涉及的各种过程。整个操作通过ROS(机器人操作系统)进行控制和协调。这项研究的主要发现展示了人类传统上进行的过程的自动化。在这种新颖的方法中,两个机器人合作操纵灵活的物体,使操作员免于重复,非价值补充的任务和处理危险物质的处理。
铟凸点阵列在量子计算中的应用越来越广泛,因为其对共面性和键合线厚度控制以及高质量电气互连的要求非常严格,红外焦平面阵列 (IR FPA) 显示出对更高分辨率的持续追求,这意味着更小的凸点、更高的密度和更大的表面积,最后,消费市场对 µLED 或 Micro LED 的需求越来越大,这意味着细间距铟互连需要更高的吞吐量。
T. Wernicke、B. Rebhan、V. Vuorinen、M. Paulasto-Krockel、V. Dubey、K. Diex、D. Wünsch、M. Baum、M. Wiemer、S. Tanaka、J. Froemel、KE Aasmundtveit、HV Nguyen、V. Dragoi
有效地需要用能量转换器覆盖较大的表面。这是太阳能电池,也称为光伏的地方。光伏设备,首先是由法国科学家Henri Becquerel于1839年发现的,它通过产生电子对 - 在光伏材料中的孔对直接转化为电子。这些对创建了电流流,该电流遵循材料的内置势坡。太阳能电池已成为重要的替代电源,尤其是自1970年代的石油座舱以来。此外,太阳能电池是一种有希望的无碳能源,可以帮助减轻全球变暖。实现高效率太阳能转化对于使太阳能成为满足世界能源需求的可行选择至关重要。太阳能电池的能量转化效率是指电池产生的电力与电池每单位时间接收到的入射阳光能量的比率。
文献中,较小的间距可预期较高的剪切强度。事实上,在之前关于飞秒激光粘合两层 PMMA 层的研究 [20] 中发现,每次激光通过产生的缺陷和空隙都会被下一条激光线产生的熔融材料填充。因此,增加连续激光线之间的重叠可提高焊接强度。相反,在我们的案例中,当激光束经过之前产生的激光修改线时,即当 h/w < 1 时,可以注意到剪切强度的降低。该结果可以归因于 PMMA 和硅之间的锚定“断裂”,这是由于激光在已经加工好的线上扫描造成的。另一方面,增加间距对剪切应力有负面但不太明显的影响。这可能
摘要 混合铜/电介质键合是一种成熟的晶圆对晶圆 (W2W) 键合技术,但将该技术应用于芯片对晶圆 (D2W) 键合却具有挑战性。芯片或晶圆上的极小颗粒可能会导致空隙/非键合区域。用于混合 W2W 的晶圆清洁和激活工艺已经相当成熟,但将其应用于减薄和单片化芯片进行 D2W 键合却非常具有挑战性。为了允许(部分)重复使用现有的晶圆级清洁、计量和激活工艺和设备,我们提出了一个新概念,即在玻璃载体晶圆上对芯片进行单片化、清洁和激活。在完成芯片准备步骤后,直接从载体晶圆上拾取芯片。这种方法不需要额外的拾取和放置步骤,并且避免使用传统的切割胶带。使用这种新方法进行的首次直接电介质 D2W 键合实验显示出非常有希望的键合产量,键合的 50 µm 薄芯片数量众多,完全没有空隙。此外,通过消除切割胶带,减薄晶圆和单个芯片始终由刚性表面支撑,从而实现超薄芯片处理。在本研究中,我们还报告了厚度小于 10 µm 的芯片的处理。关键词载体系统、混合键合、互连、拾取和放置、薄芯片
电话:707-628-5107 电子邮件:jbahena@veeco.com 摘要 5G、物联网和其他全球技术趋势的需求,加上缩小工艺节点成本的增加,已导致向更集成的封装要求转变。扇出晶圆级封装、2.5D/3D IC 封装和异构集成等先进封装技术的出现,为更小尺寸、更高功能和带宽带来了潜力。为了实现这些技术,通常需要对器件晶圆进行背面处理或减薄。这就要求使用临时粘合材料将器件晶圆粘附到刚性载体晶圆上,以便在处理和加工过程中提供机械支撑。释放载体后,必须彻底清除器件晶圆上的临时粘合材料。许多此类粘合剂都暴露在高功率激光或高温下,这使得清除更具挑战性。临时键合材料去除的亚微米级颗粒清洁要求也达到了通常为前端处理保留的标准。这在 3D 工艺中尤其重要,例如混合键合,其中特征和间距尺寸接近 < 1 µm,清洁不充分会导致后续键合工艺失败。因此,必须仔细考虑所有处理步骤以满足严格的颗粒要求。这项工作研究了硅晶片上涂层和烘烤的临时键合材料的去除,重点是获得最佳颗粒结果的加工条件。通过进行试样级研究和测量表面特性,在烧杯级评估了几种化学物质。根据这些发现,使用可定制的单晶圆加工工具对 300 毫米晶圆进行了研究。关键词临时键合材料、湿法清洗、晶圆级封装、单晶圆加工。I.简介 虽然晶体管和节点缩放一直在不断进步,但相关的成本和复杂性要求采用其他途径来提高性能。最突出的是,先进封装中的 2.5D/3D 集成通过将不同尺寸和材料的不同组件集成到单个设备中,显示出巨大的前景 [1]。由于许多当前的集成工艺流程都需要对设备晶圆进行背面处理或减薄,因此使用临时键合和脱键合 (TBDB) 系统已被证明是必要的多种类型的集成技术已经得到开发,例如扇出型晶圆级封装 (FOWLP)、2.5D 中介层、3D 硅通孔 (TSV) 和堆叠封装 (PoP),具有高集成度、低功耗、小型化和高可靠性等预期优势 [1-3]。
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性
ST Microelectronics 和 LETI:S. Lhostis、A. Farcy、E. Deloffre、F. Lorut 等人在拉斯维加斯电子元件和技术会议 ECTC 上发表演讲(2016 年)。