检测药物:用GIEMSA染色染色的血液或器官涂片的显微镜检查是鉴定临床受影响动物中adlasma的最常见方法。在这些涂片中,A。缘缘生物的直径约为0.3-1.0 µm,位于红细胞缘或附近,直径约为0.3–1.0 µm。Anaplasma Centrale的外观相似,但大多数生物都位于红细胞的中心。在染色的涂片中,很难将A.边缘与A. Centrale区分开,尤其是Rickettsaemia含量低。商业污渍会产生非常快速的Anaplasma spp染色。在某些国家 /地区可用。只有在感染的粒细胞中才能观察到吞噬细胞吞噬细胞,主要是嗜中性粒细胞,而只能在感染的单核细胞中观察到。
怀孕母牛安全性研究摘要 一项实地研究利用了来自三个不同牛群的 1600 多头牛,以及来自第四个牛群的血清学研究,证明了怀孕母牛和小母牛的安全性。所有参与研究的母牛和小母牛在配种前都接种了 Express ® FP 10 疫苗,这是一种改良活病毒 (MLV) 疫苗,含有传染性牛鼻气管炎 (IBR)、牛病毒性腹泻 (BVD) 1 型、BVD 2 型、副流感病毒 3 (PI3) 和牛呼吸道合胞病毒 (BRSV),以及犬钩端螺旋体、流感伤寒杆菌、哈德焦钩端螺旋体、出血性黄疸杆菌、波莫纳钩端螺旋体疫苗。大约三分之一的参与研究的牛被分配到三个妊娠期中的每一个。确认妊娠状态后,在指定的妊娠期进行第二次疫苗接种。每个妊娠期组的一半接种 Express ® FP 10,另一半接种 Lepto-5 疫苗。所有登记的牛都经过密切观察直至产犊。记录任何胎儿损失并对胎儿进行全面尸检。两个治疗组的胎儿损失相似。测试疫苗接种组的总胎儿损失率为 1.6%(810 头中的 13 头),对照组为 1.9%(776 头中的 15 头)。没有因 IBR 或 BVD 而诊断的流产或胎儿损失。登记的牛犊在出生后 30 天内受到监测。两个治疗组之间的犊牛健康状况没有差异。
小腿中的腹泻问题通常是由轮状病毒,Le冠状病毒,大肠杆菌K99(F5)或隐孢子虫Parvum引起的。这些问题可能导致重要的经济损失,因为受影响的动物通常显示体重增加减少,有时会导致死亡。快速鉴定涉及的病原体有助于控制疾病。建议在整个症状进化中测试每个感染牛群至少3个犊牛的粪便。
D Rani Prameela 和 P Veena 摘要 牛乳头状瘤病是由乳头状瘤病毒引起的。36 例牛乳头状瘤病病例被送往蒂鲁帕蒂 SVVU CVSc 外科和放射科诊所。根据对疣病变的临床观察,诊断为牛乳头状瘤。疣样本以无菌方式收集并处理以进行分子诊断。所有三十六份疣样本在无菌条件下用组织溶解仪进行均质化。所有三十六份疣样本在无菌条件下用组织溶解仪进行均质化。从组织匀浆中提取 DNA 并用针对 L1 基因的 PCR 进行分子诊断。在 36 个样本中,五 (5) 个对 BPV 类型 1 呈阳性,八个对 BPV 类型 -2 呈阳性,十一个对 BPV-1 和 BPV-2 同时呈阳性,其余十二个样本对 BPV 类型 5 呈阳性(使用物种特异性引物)。后来作为一种治疗措施,制备了自体疫苗。从所有患病动物身上无菌收集疣样本,并用氢氧化铝佐剂。无菌检查后,在第 0 天给患病动物皮下注射疫苗,母牛 10ml,小母牛 5ml,然后每隔 10 天注射 5 剂。疣在接种疫苗后三周开始消退,第六周完全消退。该研究表明牛乳头瘤病毒 5 型的分子诊断存在,并且使用牛特异性自体疫苗成功治疗牛乳头瘤。关键词:乳头状瘤病、疣病变、分子诊断、自体疫苗消退简介乳头瘤病毒是一群多样化的小型、无包膜、环状双链 DNA 病毒,可感染各种动物物种和人类。(Antonsson 和 Hansson,2002 年)[1]。该病毒通常感染上皮细胞,引起良性过度增殖性病变(疣、乳头状瘤和纤维乳头状瘤),这些病变可进展为癌症(Campo,2006)[9]。目前,描述了 15 种 BPV 类型(BPV -1 至 15)(Munday 等人,2015)并分为四个属。 Delta 乳头瘤病毒(BPV1、2、13 和 14)、ε 乳头瘤病毒(BPV-5&8)、Xiapapilloma 病毒(BPV-3、4、6、9、10、11、12 和 15)和 Dyoxipapilloma 病毒(BPV-7)(Melo 等人,2014 年;Grindattoo 等人,2015 年;Munday 等人,2015 年)。 2015;席尔瓦等人。德尔塔和埃普西隆乳头瘤病毒与乳头瘤和纤维乳头瘤有关,而剑突状乳头瘤病毒仅与鳞状乳头瘤有关 (Tan et al . 2012b; Araldi, 2015 and Aradi et al . 2015b) [2] 。感染可导致畜牧业因乳腺炎、牛奶和肉类产量下降以及皮革质量下降而造成重大经济损失 (Camp 2002 & 2006; Jeilnek & Tachezy 2005) [9, 14] 。感染的诊断基于临床症状、肿瘤生长的组织病理学检查、免疫组织化学和电子显微镜的使用(Turk 等人,2005 年)[33]。由于病毒入侵会导致无症状和潜伏性感染。传统的组织病理学方法、免疫组织化学既费力又费时。聚合酶链反应 (PCR) 仍然是早期诊断的重要工具。特别是在潜伏感染的无症状携带者中,无论是在上皮组织还是非上皮组织和体液中,如血液、乳汁、初乳、尿液、精液、子宫分泌物、卵巢、卵囊和胎盘等(Lindsey CJ 等人,2009 年)[19]。此外,目前没有有效的体外培养系统来培养病毒,也不可能通过血清学对流行的病毒类型进行生物分型。因此,本研究揭示了牛乳头状瘤的分子诊断和在牛中使用自源疫苗是一种成功的管理方法。
如今,畜牧业面临着增加产量以满足日益增长的动物产品需求的挑战。在这种情况下,牛的繁殖代表着一个多因素过程,需要做出明智的战略决策来提高繁殖率和经济效益。本研究的目的是分析人工智能在改善牛繁殖决策方面的潜力。分析了该学科的几种技术的应用,例如机器学习、人工神经网络、深度学习、支持向量机和决策树。这些技术可以应用于不同的领域,例如:基因选择、发情和疾病检测、人工授精和动物健康监测。这些技术的使用取决于三个基本因素:组织的特征、拟议的目标和数据集的特殊性,在决定使用哪种技术时必须考虑到这些因素。因此,智能技术的应用可以降低成本,增加牛奶和肉类产量,从而提高效率和盈利能力,保证动物福利,从而实现畜牧业的可持续发展。决策、畜牧业、智能技术、食品安全
生殖疾病:不育,低概念和怀孕率,流产,死产,犊牛弱,先天性缺陷。腹泻:轻度腹泻,发烧,饲料,快速恢复,受影响的动物数量大。腹泻:严重的腹泻,发烧,大量生病动物,频繁和快速死亡。毫无疑问的Pi犊牛:可能比休息小,长发卷发。急性粘膜疾病(PI犊牛6-24个月大):抑郁症,喂食,唾液,唾液,粘液和/或血液腹泻大量腹泻;可能在口腔和鼻子上侵蚀,脏鼻腔或la行;快速死亡。慢性粘膜疾病(PI牛):无礼,慢性腹泻和肿胀,体重减轻,慢性皮肤病变,蹄畸形,口腔中的慢性侵蚀,肺炎;高死亡损失。出血性疾病:血腥腹泻,眼睛出血,从注射部位流血,鼻子流血。
保修/免责声明:除非另有说明,否则所有产品仅用于研究或一般实验室使用。*不打算用于诊断或治疗程序。不适用于人类。这些产品并非旨在减轻在表面或环境中存在微生物的存在,在这种情况下,这种生物可能对人类或环境有害。Corning Life Sciences对这些产品在临床或诊断应用中的性能没有任何要求。*有关美国医疗设备,监管分类或索赔的特定信息的列表,请访问www.corning.com/resources。
牛边形体病主要由 Anaplasma marginale 引起,对牛健康和畜牧业构成重大挑战。该领域的研究已发展到解决该疾病的各个方面,包括其病因、流行病学、诊断、治疗、预防和社会经济影响。在理解、诊断、治疗和预防牛边形体病方面取得的最新进展有助于改善管理实践。尽管该领域的研究取得了进展,但仍有一些关键领域需要采取行动。对于本期特刊,我们欢迎原创文章、评论论文和通讯的投稿,这将有助于增进对该疾病的理解、预防和控制,特别是在疫苗开发、了解发病机制、诊断改进和媒介控制策略方面。
怀孕母牛安全性研究摘要 一项实地研究利用了来自三个不同牛群的 1600 多头牛,以及来自第四个牛群的血清学研究,证明了怀孕母牛和小母牛的安全性。所有参与研究的母牛和小母牛在配种前都接种了 Express ® FP 10 疫苗,这是一种改良活病毒 (MLV) 疫苗,含有传染性牛鼻气管炎 (IBR)、牛病毒性腹泻 (BVD) 1 型、BVD 2 型、副流感病毒 3 (PI3) 和牛呼吸道合胞病毒 (BRSV),以及犬钩端螺旋体、流感伤寒杆菌、哈德焦钩端螺旋体、出血性黄疸杆菌、波莫纳钩端螺旋体疫苗。大约三分之一的参与研究的牛被分配到三个妊娠期中的每一个。确认妊娠状态后,在指定的妊娠期进行第二次疫苗接种。每个妊娠期组的一半接种 Express ® FP 10,另一半接种 Lepto-5 疫苗。所有登记的牛都经过密切观察直至产犊。记录任何胎儿损失并对胎儿进行全面尸检。两个治疗组的胎儿损失相似。测试疫苗接种组的总胎儿损失率为 1.6%(810 头中的 13 头),对照组为 1.9%(776 头中的 15 头)。没有因 IBR 或 BVD 而诊断的流产或胎儿损失。登记的牛犊在出生后 30 天内受到监测。两个治疗组之间的犊牛健康状况没有差异。