在过程A中,功率和低温热进行,并在反向周期(例如Brayton Cycles或Rankine Cycles)中升高(或冷却)低温热量(或冷却)。在某些情况下,通过电阻加热直接从电源产生高温热。 在过程B中,在过程A中产生的热量被存储,并且在过程C中,热量在连续周期中转化为功率并提供。由于始终产生低温热,也可以与区域热供应结合使用。
Solar Thermal Energy Collectors : Types of Solar Collectors, Configurations of Certain Practical Solar Thermal Collectors, Material Aspects of Solar Collectors, Concentrating Collectors, Parabolic Dish – Stirling Engine System, Working of Stirling or Brayton Heat Engine, Solar Collector Systems into Building Services, Solar Water Heating Systems, Passive Solar Water Heating Systems, Applications of Solar Water Heating Systems, Active Solar Space Cooling, Solar Air Heating,太阳能烘干机,作物干燥,太空咕咕声,太阳能炊具,太阳能池。
模块化设计概念有效地利用了高温镍合金,为印刷电路热交换器 (PCHE) 提供了一种替代方案,并有可能降低成本。通过利用 AM 技术的快速发展并结合定向能量沉积 (DED) 和激光能量床熔合 (L-PBF),模块化设计可以显著降低高温热交换器的制造成本,例如 sCO2 布雷顿循环中的高温回热器 (HTR),使 CSP 工厂能够在 2030 年前实现 0.05 美元/千瓦时的 LCOE 目标。
1 Cryogenic devices, instruments, coolers (working on various cycles such as: Stirling, IR detector coolers, PTC, JT, Brayton, its combinations for staging, GM, vortex, magnetic, anti-Stokes optical, TEC) for space, defence and atomic energy programmes, Non CFC Stirling cycle operated coolers, deep freezers, free piston engines and CHP for environment friendly applications,磁性冰箱,反stokes光冷却器和吸附,用于关键应用的稀释技术。冷却的传感器和检测/成像,低温,半低温和三型火箭系统建模和亚尺度原型制作。冷冻材料表征和测试。分离过程,天然气加工,二氧化碳捕获和隔离。紧凑的低温存储和转移系统。涡流管式空气分离技术用于战斗机飞机。超级绝缘和紧凑的露水,用于空间,紧凑的空间模拟室。
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
有人的舱室、货舱和电子设备舱环境控制系统是所有军用和民用飞机的一部分。它还满足其他气动需求,如挡风玻璃除雾、机翼防冰、门密封、油箱增压和发动机舱通风。所有类型的军用/民用飞机的空调技术主要是空气循环空调。该系统基于焦耳或逆布雷顿循环,利用从主发动机/APU 压缩机抽取的高温高压引气。它不仅具有气动设备简单和固有紧凑的优势,而且还满足飞机的综合冷却和增压要求。关键词:空气管理系统、通风、湿度/
这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
目前已在太空中部署和开发未来部署的各种航空航天冷冻冷却器设计所证明的,可变的有效负载要求促使人们需要广泛选择的冷冻冷却器类型和尺寸。反向Brayton,Stirling,Pulse Tube和Joule-Thomson是最常见的类型,以及这些类型的混合组合,例如Cryocoolers的Raytheon Stirling / Pulse Tube Tage(RSP2)系列。这些类型中的每一种都体现了其独特的优势,其相关性和重要性是有效载荷依赖的功能。工作温度,热负荷,制冷阶段的数量,有效载荷物理配置和最大允许的发射振动是关键有效负载要求的示例,可驱动选择最佳冷冻机类型和大小的选择。另一个关键因素是采购成本,特别是对于需要低温制冷的新兴类别的“响应空间”红外传感器。本文讨论了各种冷冻机类型的优势和劣势,以及如何将这些特性与用户在有效载荷要求上的最大优势保持一致。
NASA正在为未来的机器人空间科学和勘探任务开发动态功率转换技术,该任务由放射性同位素动力系统(RPS)提供支持。动态放射性同位素电源系统(DRP)项目正在努力成熟众多动态功率转换器和控制器,以潜在输注未来的飞行发电机。电力转换技术的成熟由RPS计划管理,并由位于NASA的Glenn Research Center(GRC)的DRP项目和热能转换分支执行。转换器成熟包括多个转换器技术开发合同,以提供新的原型以及对过去项目期间委托的相关遗留转换器的持续测试。转换器技术开发合同包括两个Stirling承包商团队和一个Brayton团队。所有合同现在已经完成了计划在第2阶段计划的原型制造和测试。政府对新原型的评估包括在相关环境中验证性能以及对设计的验证,重点是鲁棒性。