提出了一种新的数值连续性一域方法(ODA)求解器,以模拟自由流体和多孔培养基之间的转移过程。求解器是在介观尺度框架中开发的,其中假定多孔介质的物理参数(例如孔隙率和渗透率)的连续变化。在不可压缩的流体的假设下,Navier -Stokes -Brinkman方程与连续性方程一起解决。假定多孔培养基已完全饱和,并且可能是各向异性的。该域被非结构化的网格离散,允许局部改进。应用了一个分数时间步骤过程,其中一个预测变量和两个校正步骤在每次迭代中求解。预测变量步骤在时空过程的框架内解决,具有一些重要的数值优势。两个校正器步骤需要大型线性系统的解决方案,该系统的矩阵稀疏,对称和正确定,在Delaunay -meshes上具有 -Matrix属性。使用预处理的共轭梯度方法获得快速有效的解决方案。两个校正器步骤所采用的离散化可以被视为两点 - 频率 - 及时(TPFA)方案,该方案与标准TPFA方案不同,该方案不需要网格网格的网状网格是𝐊-the-the-the-ottropropropy Tensor。如提供的测试用例所示,所提出的方案正确保留了多孔培养基中的各向异性效应。此外,它克服了文献中提出的现有介质量表的一域方法的限制。
参考文献1。Hahn BH。 抗DNA的抗体。 n Engl J Med。 1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Hahn BH。抗DNA的抗体。n Engl J Med。1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1998; 338:1359-1368。2。tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。1982年修订的全身性红斑狼疮分类的标准。节炎。1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 25:1271-1277。3。Egner W.在SLE的诊断中使用实验室测试。J Clin Pathol。2000; 53:424-432。4。Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。J immunol。1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 128:73-78。5。Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。抗DSDNA:与临床价值相关的测定方法。风湿性int。1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1991; 11:101-107。6。Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Ann Rheum Dis。1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1985; 44:245-251。7。Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Peng SL,Craft Je。抗核抗体。in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。Elsevier:2017; 817-830。8。Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。临床和实验性风湿病学。2015; 33(2):217-224。2015; 33(2):217-224。9。Damoiseaux JG,Tervaert JWC,Froment Dr,Van Venrooij WJ,Hillen HFP。抗双链DNA(DSDNA)抗体的诊断值与结缔组织疾病中其他实验室参数有关。风湿性疾病的年鉴。2002; 61(5):474-476。 10。 Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。 j风湿病。 2006年9月; 33(9):1785-1788。2002; 61(5):474-476。10。Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。j风湿病。2006年9月; 33(9):1785-1788。
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
摘要:多孔介质中的自然对流代表了一种基本的运输现象,其在工程和自然系统中具有广泛的应用。这项全面的综述研究了包含嵌入物体的正方形外壳内的流体流,传热和多孔结构之间的复杂相互作用。通过分析最近的理论发展,数值研究和实验研究,本文提供了有关通过多孔培养基增强传热增强的机制的见解。特别注意几何配置,材料特性和操作条件对系统性能的影响。此处介绍的发现对热管理系统,地热应用和储能技术的设计和优化具有重要意义。KEYWORDS: Natural convection, Porous media, Heat transfer, Darcy flow, Computational fluid dynamics, Square enclosure, Thermal transport, Buoyancy-driven flow, Heat exchangers, Numerical simulation, Rayleigh number, Nusselt number, Thermal optimization, Geothermal systems, Energy storage, Embedded objects, Isotherm analysis, Streamline visualization, Finite volume method, Heat transfer enhancement I.引言1.1背景和动机多孔介质中自然对流的研究已成为研究的关键领域,因为它在众多工程应用和自然现象中的基本作用。从地热能提取到电子冷却系统,浮力驱动的流动结构的原理继续塑造技术进步。本综述旨在综合该领域的当前理解和最新发展,特别强调涉及带有嵌入式对象的正方形外壳的应用。1.2历史发展多孔媒体对自然对流的调查可以追溯到亨利·达西(Henry Darcy)在19世纪的开创性作品。Forchheimer,Brinkman等研究人员的后续发展已建立了通过多孔材料分析流量的理论框架。近几十年来计算方法的整合已大大提高了我们对这些复杂系统的理解。1.3 Applications and Significance The principles of natural convection in porous media find applications across diverse fields: • Geothermal energy systems and underground heat storage • Environmental remediation and groundwater flow • Heat exchangers and thermal management systems • Nuclear waste disposal • Solar energy collectors • Building thermal insulation • Chemical reactors and process equipment
M. Veldhorst Qutech和卡夫利纳米科学学院,代尔夫特技术大学,荷兰摘要我们采用可扩展量子技术的方法脱离了晶体管,这是人类制造的最复制的结构。我们在硅和锗量子点的电子和孔的自旋状态下定义了Qubit。在这次演讲中,我将介绍我们最新的结果,以提高量子质量和数量。首先,我们证明即使是一个孔也可以连贯地控制。通过利用孔的强旋轨相互作用,我们获得了99.99%的栅极保真度的快速量子操作,为量子点系统设定了新的基准测试。此外,通过动态解耦,我们获得了孔的创纪录相干时间,并通过将此技术应用于带滤波器,我们能够测量与核自旋的横向超精细相互作用。第二,我们证明可以在相同的温度状态下操作量子点量子和控制电子设备。此外,我们表明可以使用完全工业的300毫米晶圆过程来实现量子位。这些共同定义了迈向集成量子电路的关键步骤。第三,我们构造了一个2x2量子点阵列,并在二维中显示量子耦合。我们获得了通用控制,并证明了纠缠和解开所有四个量子位的量子电路的连贯执行。Bio Menno Veldhorst是Qutech的小组负责人,Qutech Academy的领导和Tu Delft扩展学校的投资组合总监。他发表了60多篇论文,其中包括《科学与自然期刊》中的18个出版物。最后,我将提出克服量子到问题变化的策略,旨在构建比量子数少的控制线较少的量子系统,以实现量子和技术的相同材料和技术来实现量子优势,从而实现了当今信息年龄的相同材料和技术。Veldhorst在Twente大学获得了优异的奖项(A. Brinkman教授和H. Hilgenkamp教授)。他在新南威尔士大学的教授小组中进行了博士后研究。 A. Dzurak在硅中展示了单一和两分Qubit的逻辑,在2015年被物理学世界称为2015年物理学的前十名突破之一。他在Qutech的小组引入了平面锗量子,在一个开尔文上方证明了硅的通用逻辑,并实现了带有量子点的四个Qubit逻辑。为他对硅和锗量子技术的贡献,他获得了尼古拉斯·库尔蒂科学奖,他被列为麻省理工学院技术评论列表中的有远见的人35下的创新者。作为Qutech Lead Academy,Veldhorst开发了有关量子技术的大型在线课程(MOOC),这些课程吸引了已经吸引了80.000多名学生。
Abkowitz, JL、Persik, MT、Shelton, GH、Ott, RL、Kiklevich, JV、Catlin, SN 和 Guttorp, P. (1995)。大型动物造血干细胞的行为。美国国家科学院院刊,92 (6),2031–2035。https://doi.org/10.1073/pnas.92.6.2031 Brinkman, EK、Kousholt, AN、Harmsen, T.、Leemans, C.、Chen, T.、Jonkers, J. 和 Van Steensel, B. (2018)。模板引导的 CRISPR/Cas9 编辑的简易量化。核酸研究,46 (10),e58。 https://doi.org/10.1093/nar/gky164 Le, QA, Hirata, M., Nguyen, NT, Takebayashi, K., Wittayarat, M., Sato, Y., Namula, Z., Nii, M., Tanihara, F., & Otoi, T. (2020)。使用不同浓度的 Cas9 蛋白和靶向肌肉生长抑制素 (MSTN) 基因的 gRNA 进行电穿孔处理对猪受精卵发育和基因编辑的影响。动物科学杂志,91 (1),e13386。 https://doi.org/10.1111/asj.13386 Li, R.、Liu, Y.、Pedersen, HS、Kragh, PM 和 Callesen, H. (2013)。猪单性生殖胚胎去除透明带后的发育和质量。Theriogenology,80 (1),58–64。https://doi.org/10.1016/j.theriogenology.2013.03.009 Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., & Gerdts, V. (2012)。猪:人类传染病的模型。微生物学趋势,20 (1),50–57。Nishio, K., Tanihara, F., Nguyen, T.-V., Kunihara, T., Nii, M., Hirata, M., Takemoto, T., & Otoi, T. (2018)。电穿孔过程中电压强度对体外生产的猪胚胎发育和质量的影响。家畜繁殖,53 (2),313–318。https://doi. org/10.1111/rda.13106 Peng, H., Wu, Y., & Zhang, Y. (2012)。通过电穿孔将 DNA 和吗啉代诺西酮有效递送到小鼠植入前胚胎中。PLoS One,7 (8),e43748。https://doi.org/10.1371/journal.pone.0043748 Peura, TT, & Vajta, G. (2003)。绵羊和牛核移植中现有方法与新方法的比较。克隆干细胞,5 (4),257–277。 https://doi.org/10.1089/153623003772032772 Qin, W., Dion, SL, Kutny, PM, Zhang, Y., Cheng, AW, Jillette, NL, Malhotra, A., Geurts, AM, Chen, Y.-G., & Wang, H. (2015). 通过合子电穿孔核酸酶在小鼠中实现高效的 CRISPR/Cas9 介导基因组编辑。遗传学,200 (2), 423–430。 https://doi.org/10.1534/ Genetics.115.176594 Remy, S., Chenouard, V., Tesson, L., Usal, C., Ménoret, S., Brusselle, L., Hes- lan, J.-M., Nguyen, TH, Bellien, J., Merot, J., De Cian, A., Giovannangeli, C., Concordet, J.-P., &Anegon, I. (2017). 通过使用电穿孔将 CRISPR/Cas9 蛋白和供体 DNA 递送到完整受精卵中来生成基因编辑大鼠。科学报告,7 (1),16554。https://doi.org/10。 1038/s41598-017-16328-y Tanihara, F.、Hirata, M.、Nguyen, NT、Sawamoto, O.、Kikuchi, T.、Doi, M. 和 Otoi, T. (2020)。通过将 CRISPR/Cas9 系统电穿孔到体外受精的受精卵中有效生成 GGTA1 缺陷猪。BMC Biotechnology,20 (1),40。https://doi.org/10.1186/s12896-020-00638-7
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和